zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions. (English) Zbl 1196.33020
Summary: The fast computation of the Gauss hypergeometric function $_2F_1$ with all its parameters complex is a difficult task. Although the $_2F_1$ function verifies numerous analytical properties involving power series expansions whose implementation is apparently immediate, their use is thwarted by instabilities induced by cancellations between very large terms. Furthermore, small areas of the complex plane, in the vicinity of $_2F_1$, are inaccessible using $_2F_1$ power series linear transformations. In order to solve these problems, a generalization of R.C. Forrey’s transformation theory has been developed. The latter has been successful in treating the $_2F_1$ function with real parameters. As in real case transformation theory, the large canceling terms occurring in $_2F_1$ analytical formulas are rigorously dealt with, but by way of a new method, directly applicable to the complex plane. Taylor series expansions are employed to enter complex areas outside the domain of validity of power series analytical formulas. The proposed algorithm, however, becomes unstable in general when $|a|, |b|, |c|$ are moderate or large. As a physical application, the calculation of the wave functions of the analytical Pöschl-Teller-Ginocchio potential involving $_2F_1$ evaluations is considered.
33F05Numerical approximation and evaluation of special functions
33C05Classical hypergeometric functions, ${}_2F_1$
81-04Machine computation, programs (quantum theory)
81Q05Closed and approximate solutions to quantum-mechanical equations
Full Text: DOI arXiv
[1] Michel, N.: Comput. phys. Comm., Comput. phys. Comm. 176, 232 (2007)
[2] Alder, K.; Bohr, A.; Huus, T.; Mottelson, B.; Winther, A.: Rev. mod. Phys., Rev. mod. Phys. 28, 432 (1956)
[3] Biedenharn, L. C.; Brussaard, P. J.: Coulomb excitation, (1965) · Zbl 0113.46405
[4] Mullin, C. J.; Guth, E.: Phys. rev., Phys. rev. 82, 141 (1951)
[5] Van Haeringen, H.; Van Wageningen, R.: J. math. Phys., J. math. Phys. 16, 1441 (1975)
[6] Datta, S.: J. phys. B: at. Mol. phys., J. phys. B: at. Mol. phys. 18, 853 (1985)
[7] Adkins, G.; Donnell, J. Mc: Phys. rev. D, Phys. rev. D 75, 082001 (2007)
[8] Hostler, L.: J. math. Phys., J. math. Phys. 28, 2984 (1987)
[9] Adam, J. A.: J. math. Phys., J. math. Phys. 30, 744 (1989)
[10] Pierro, V.; Pinto, I. M.; Spallici, A.: Mon. not. R. astron. Soc., Mon. not. R. astron. Soc. 334, 855 (2002)
[11] Eckart, C.: Phys. rev., Phys. rev. 35, 1303 (1930)
[12] Rosen, N.; Morse, P. M.: Phys. rev., Phys. rev. 42, 210 (1932)
[13] Hulthén, L.: Ark. mat. Astron. fys. A, Ark. mat. Astron. fys. A 28 (1942)
[14] Mannning, M. F.; Rosen, N.: Phys. rev., Phys. rev. 44, 953 (1933)
[15] Dong, S. H.; Garcia-Ravelo, J.: Phys. scripta, Phys. scripta 75, 307 (2007)
[16] Natanzon, G. A.: Vestn. leningr. Univ. fiz. Khim., Vestn. leningr. Univ. fiz. Khim. 10, 22 (1971)
[17] Rojas, C.; Villalba, V. M.: Phys. rev. A, Phys. rev. A 71, 052101 (2005)
[18] Guo, J. -Y.; Fang, X. Z.; Xu, F. -X.: Phys. rev. A, Phys. rev. A 66, 062105 (2002)
[19] Guo, J. -Y.; Meng, J.; Xu, F. -X.: Chin. phys. Lett., Chin. phys. Lett. 20, 602 (2003)
[20] Sucu, Y.; Ünal, N.: J. math. Phys., J. math. Phys. 48, 052503 (2007)
[21] Cooper, F.; Ginocchio, J. N.; Khare, A.: Phys. rev. D, Phys. rev. D 36, 2458 (1987)
[22] Cardero, P.; Salamo, S.: J. math. Phys., J. math. Phys. 35, 3301 (1994)
[23] Chetouani, L.; Guechi, L.; Lecheheb, A.; Hammann, T.: J. math. Phys., J. math. Phys. 34, 1257 (1993)
[24] Ginocchio, J. N.: Ann. phys., Ann. phys. 152, 203 (1984)
[25] Chetouani, L.; Guechi, L.; Lecheheb, A.; Hammann, T.: Czech J. Phys., Czech J. Phys. 45, 699 (1995)
[26] Bennaceur, K.; Dobaczewski, J.; Płoszajczak, M.: Phys. rev. C, Phys. rev. C 60, 034308 (1999)
[27] Stoitsov, M. V.; Dimitrova, S.; Pittel, S.; Van Isacker, P.; Frank, A.: Phys. lett. B, Phys. lett. B 415, 1 (1997)
[28] Pittel, S.; Stoitsov, M. V.: J. phys. G: nucl. Part. phys., J. phys. G: nucl. Part. phys. 24, 1461 (1998)
[29] M.V. Stoitsov, N. Michel, K. Matsuyanagi, nucl-th/0709.1006, Phys. Rev. C, submitted for publication
[30] Abramowitz, M.: Hypergeometric functions, Applied mathematics series 55 (1972)
[31] Forrey, R. C.: J. comp. Phys., J. comp. Phys. 137, 79 (1997)
[32] Numerical Aspects of Special Functions, N.M. Temme, Numerics of Special Functions, ICNAAM 2005, Rhodes, Greece, 16 -- 20 September, http://www.cant.ua.ac.be/workshops/files/icnaam/temme.pdf · Zbl 1087.65527
[33] Bühring, W.: J. SIAM math. Anal., J. SIAM math. Anal. 18, 884 (1987)
[34] Becken, W.; Schmelcher, P.: J. comp. Appl. math., J. comp. Appl. math. 126, 449 (2000)
[35] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical recipes in C, (1988)
[36] Abramowitz, M.: Gamma function and related functions, Applied mathematics series 55 (1972) · Zbl 0543.33001
[37] Higham, N. J.: Accuracy and stability of numerical algorithms, (1996) · Zbl 0847.65010
[38] Gil, A.; Segura, J.; Temme, N. M.: Math. comp., Math. comp. 76, 1449 (2007)
[39] Vidunas, R.: J. comp. Appl. math., J. comp. Appl. math. 153, 507 (2003)