Li, Zhi-Bin; Liu, Yin-Ping RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations. (English) Zbl 1196.35008 Comput. Phys. Commun. 148, No. 2, 256-266 (2002). Summary: A Maple package RATH which outputs entirely automatically tanh-polynomial travelling solitary wave solutions of a given nonlinear evolution equation is presented. The effectiveness of RATH is demonstrated by applications to a variety of equations with physical interest as examples. Not only are previously known solutions recovered but in some cases new solutions and more general form of solutions are obtained. Cited in 31 Documents MSC: 35-04 Software, source code, etc. for problems pertaining to partial differential equations 35Q35 PDEs in connection with fluid mechanics 68W30 Symbolic computation and algebraic computation Keywords:Maple; RATH Software:RATH; MACSYMA; Maple PDF BibTeX XML Cite \textit{Z.-B. Li} and \textit{Y.-P. Liu}, Comput. Phys. Commun. 148, No. 2, 256--266 (2002; Zbl 1196.35008) Full Text: DOI References: [1] Hereman, W.; Banerjee, P. P.; Korpel, A.; Assanto, G.; Van Immerzeele, A.; Meerpoel, A., J. Phys. A: Math. Gen., 19, 607 (1986) · Zbl 0621.35080 [2] Hereman, W.; Takaoka, M., J. Phys. A: Math. Gen., 23, 4805 (1990) · Zbl 0719.35085 [3] Li, Z. B.; Wang, M. L., J. Phys. A: Math. Gen., 26, 6027 (1993) [4] Parkes, E. J.; Duffy, B. R., Comp. Phys. Comm., 98, 288 (1996) [5] Fan, E. G.; Zhang, H. Q., Phys. Lett. A, 245, 389 (1998) [6] Zhang, G. X.; Li, Z. B.; Duan, Y. S., Sci. China Ser. A, 12 (2000), (in Chinese) [7] Lan, H.; Wang, K., J. Phys. A: Math. Gen., 23, 3923 (1990) [8] Malfliet, W., Am. J. Phys., 60, 650 (1992) [9] Canosa, J.; Gazdag, J., J. Comput. Phys. D, 39, 77 (1997) [10] Wu, W. T., Mechanical Theorem Proving in Geometries: Basic Principles (1994), Springer-Verlag: Springer-Verlag New York, English translation by X. Jin and D. Wang, originally published as “Basic Principles of Mechanical Theorem Proving in Geometry” in Chinese language by Scince Press, Beijing, 1984 [11] Mishra, B., Algorithmic Algebra (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0804.13009 [12] Wang, D., RISC-Linz Ser., 91, 25 (1991) [13] Kudryashov, N. A., J. Appl. Math. Mech., 52, 361 (1998) [14] Kuramoto, Y.; Tsuzuki, T., Prog. Theor. Phys., 55, 356 (1976) [15] Ma, W., Phys. Lett. A, 180, 221 (1993) [16] Duffy, B. R.; Parkes, E. J., Phys. Lett. A, 214, 271 (1996) · Zbl 0972.35528 [17] Ito, M., J. Phys. Lett. A, 131, 277 (1998) [18] Lax, P. D., Comm. Pure Appl. Math., 21, 467 (1968) [19] Sawada, K.; Kortera, T., Prog. Theor. Phys., 51, 1355 (1974) [20] Kaup, D. J., Stud. Appl. Math., 62, 189 (1980) [21] Li, Z. B.; Pan, S. Q., Acta Phys. Sinica, 50, 402 (2001), (in Chinese) [22] Wang, X. Y., Phys. Lett. A, 131, 277 (1998) [23] Whilemsson, H., Phys. Rev. A, 36, 965 (1987) [24] Bretherton, F. P., J. Fluid Mech., 12, 591 (1964) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.