zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiplicity of solutions for a class of Kirchhoff type problems. (English) Zbl 1196.35077
Summary: We apply the (variant) fountain theorems to study the symmetric nonlinear Kirchhoff nonlocal problems. Under the Ambrosetti-Rabinowitz’s 4-superlinearity condition, or no Ambrosetti-Rabinowitz’s 4-superlinearity condition, we present two results of existence of infinitely many large energy solutions, respectively.

35J20Second order elliptic equations, variational methods
35J60Nonlinear elliptic equations
35J25Second order elliptic equations, boundary value problems
Full Text: DOI
[1] Alves, C.O., Correa, F.J.S.A. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl., 49: 85--93 (2005) · Zbl 1130.35045 · doi:10.1016/j.camwa.2005.01.008
[2] Ambrosetti, A., Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal., 14: 349--381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[3] Ancona, P.D’, Spagnolo, S. Global Solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math., 108: 247--262 (1992) · Zbl 0785.35067 · doi:10.1007/BF02100605
[4] Andrade, D., Ma, T.F. An operator equation suggested by a class of nonlinear stationary problems. Comm. Appl. Nonli. Anal., 4: 65--71 (1997) · Zbl 0911.47062
[5] Arosio, A., Pannizi, S. On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc., 348: 305--330 (1996) · Zbl 0858.35083 · doi:10.1090/S0002-9947-96-01532-2
[6] Bernstein, S. Sur une classe d’équations fonctionnelles aux dérivées partielles. Izv. Akad. Nauk SSSR Ser. Mat., 4: 17--26 (1940) · Zbl 0026.01901
[7] Cavalcanti, M.M., Cavacanti, V.N., Soriano, J.A. Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Diff. Eqns., 6: 701--730 (2001) · Zbl 1007.35049
[8] Chipot, M., Lovat, B. Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Analysis, 30: 4619--4627 (1997) · Zbl 0894.35119 · doi:10.1016/S0362-546X(97)00169-7
[9] Chipot, M., Rodrigues, J.-F. On a class of nonlocal nonlinear elliptic problems. RAIRO Modél. Math. Anal. Numér., 26: 447--467 (1992) · Zbl 0765.35021
[10] Jeajean, L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbb{R}$N, Proc. Roy. Soc. Edinburgh Sect. A, 129: 787--809 (1999) · Zbl 0935.35044
[11] Kirchhoff, G. Mechanik, Teubner, Leipzig, 1883
[12] Lions, J.-L. On some quations in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial differential Equations, Proc. Internat. Sympos., Inst. Mat. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, in: North-Holland Math. Stud., vol.30, North-Holland, Amsterdam, 284--346, 1978
[13] Ma, T.F., Muñoz Rivera, J.E. Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett., 16: 243--248 (2003) · Zbl 1135.35330 · doi:10.1016/S0893-9659(03)80038-1
[14] Mao, A., Zhang, Z. Sign-changing and multiple solutions of Kirchhoff type problems without P. S. condition. Nonlinear Analysis: Theory, Methods and Applications, 70(3): 1275--1287 (2009) · Zbl 1160.35421 · doi:10.1016/j.na.2008.02.011
[15] Perera, K., Zhang, Z. Nontrivial solutions of kirchhoff-type problems via the Yang index. J. Diff. Eqns., 221: 246--255 (2006) · Zbl 05013580 · doi:10.1016/j.jde.2005.03.006
[16] Pohožaev, S.I. A certain class of quasilinear hyperbolic equations. Mat. Sb.(N.S.), 96: 152--166, 168 (1975)
[17] Willem, M. Minimax Theorems, Birkhäuser, Boston, 1996
[18] Zhang, Z., Perera, K. Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl., 317: 456--463 (2006) · Zbl 1100.35008 · doi:10.1016/j.jmaa.2005.06.102
[19] Zou, W. Variant fountain theorem and their applivations. Manuscripta Math., 104: 343--358 (2001) · Zbl 0976.35026 · doi:10.1007/s002290170032
[20] Zou, W., Li, S. Infinitely many homoclinic orbits for the second-order Hamiltonian systems. Appl. Math. Lett., 16: 1283--1287 (2003) · Zbl 1039.37044 · doi:10.1016/S0893-9659(03)90130-3