Bekir, Ahmet; Cevikel, Adem C. New solitons and periodic solutions for nonlinear physical models in mathematical physics. (English) Zbl 1196.35178 Nonlinear Anal., Real World Appl. 11, No. 4, 3275-3285 (2010). Summary: We establish exact solutions for three nonlinear equations. The sine-cosine and the exp-function methods are used to construct periodic and soliton solutions of nonlinear physical models. Many new families of exact traveling wave solutions of the nonlinear wave equations are successfully obtained. These solutions may be of significance for the explanation of some practical physical problems. It is shown that the sine-cosine and the exp-function methods provide a powerful mathematical tool for solving a great many nonlinear partial differential equations in mathematical physics. Cited in 12 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35B10 Periodic solutions to PDEs 35C08 Soliton solutions 35C07 Traveling wave solutions Keywords:solitons; sine-cosine-method; exp-function method; generalized Zakharov equations; \((2+1)\)-dimensional Davey-Stewartson equation PDF BibTeX XML Cite \textit{A. Bekir} and \textit{A. C. Cevikel}, Nonlinear Anal., Real World Appl. 11, No. 4, 3275--3285 (2010; Zbl 1196.35178) Full Text: DOI OpenURL References: [1] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering transform, (1990), Cambridge University Press Cambridge · Zbl 0762.35001 [2] Malfliet, W., Solitary wave solutions of nonlinear wave equations, American journal of physics, 60, 650-654, (1992) · Zbl 1219.35246 [3] Malfliet, W.; Hereman, W., The tanh method: I. exact solutions of nonlinear evolution and wave equations, Physica scripta, 54, 569-575, (1996) · Zbl 0942.35035 [4] Wazwaz, A.M., The tanh method for travelling wave solutions of nonlinear equations, Applied mathematics and computation, 154, 3, 713-723, (2004) · Zbl 1054.65106 [5] Wazwaz, A.M., The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Applied mathematics and computation, 167, 2, 1196-1210, (2005) · Zbl 1082.65585 [6] Alabdullatif, M.; Abdusalam, H.A., New exact travelling wave solutions for some famous nonlinear partial differential equations using the improved tanh-function method, International journal of computer mathematics, 83, 10, 741-751, (2006) · Zbl 1111.65090 [7] Fan, E., Extented tanh-function method and its applications to nonlinear equations, Physics letters A, 277, 212, (2000) · Zbl 1167.35331 [8] Fan, E.; Hon, Y.C., Applications of extended tanh method to ‘special’ types of nonlinear equations, Applied mathematics and computation, 141, 2-3, 351-358, (2003) · Zbl 1027.65128 [9] Wazwaz, A.M., The tanh method and the sine – cosine method for solving the KP-MEW equation, International journal of computer mathematics, 82, 235-246, (2005) · Zbl 1064.65119 [10] Wazwaz, A.M., A sine – cosine method for handling nonlinear wave equations, Mathematical and computer modelling, 40, 499-508, (2004) · Zbl 1112.35352 [11] Wazwaz, A.M., Exact solutions for the ZK-MEW equation by using the tanh and sine – cosine methods, International journal of computer mathematics, 82, 699-708, (2005) · Zbl 1068.35145 [12] Yusufoğlu, E.; Bekir, A., Solitons and periodic solutions of coupled nonlinear evolution equations by using sine – cosine method, International journal of computer mathematics, 83, 12, 915-924, (2006) · Zbl 1115.35117 [13] Fan, E.; Zhang, H., A note on the homogeneous balance method, Physics letters A, 246, 403-406, (1998) · Zbl 1125.35308 [14] Senthilvelan, M., On the extended applications of homogeneous balance method, Applied mathematics and computation, 123, 381-388, (2001) · Zbl 1032.35159 [15] Wang, M.L., Exact solutions for a compound KdV-Burgers equation, Physics letters A, 213, 279-287, (1996) · Zbl 0972.35526 [16] Dai, C.Q.; Zhang, J.F., Jacobian elliptic function method for nonlinear differential-difference equations, Chaos, solitons and fractals, 27, 1042-1049, (2006) [17] Fan, E.; Zhang, J., Applications of the Jacobi elliptic function method to special-type nonlinear equations, Physics letters A, 305, 383-392, (2002) · Zbl 1005.35063 [18] Liu, S.; Fu, Z.; Liu, S.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Physics letters A, 289, 69, (2001) · Zbl 0972.35062 [19] Abdou, M.A., The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos, solitons and fractals, 31, 95-104, (2007) · Zbl 1138.35385 [20] Ren, Y.J.; Zhang, H.Q., A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2 +1)-dimensional nizhnik – novikov – veselov equation, Chaos, solitons and fractals, 27, 959-979, (2006) · Zbl 1088.35536 [21] Zhang, J.L.; Wang, M.L.; Wang, Y.M.; Fang, Z.D., The improved F-expansion method and its applications, Physics letters A, 350, 1-2, 103-109, (2006) · Zbl 1195.65211 [22] Bekir, A.; Boz, A., Exact solutions for nonlinear evolution equations using exp-function method, Physics letters A, 372, 10, 1619-1625, (2008) · Zbl 1217.35151 [23] He, J.H., Exp-function method for nonlinear wave equations, Chaos, solitons and fractals, 30, 700-708, (2006) · Zbl 1141.35448 [24] He, J.H.; Abdou, M.A., New periodic solutions for nonlinear evolution equations using exp-function method, Chaos, solitons and fractals, 34, 5, 1421-1429, (2007) · Zbl 1152.35441 [25] El-wakil, S.A.; El-labany, S.K.; Zahran, M.A.; Sabry, R., Modified extended tanh-function method for solving nonlinear partial differential equations, Physics letters A, 299, 2-3, 179-188, (2002) · Zbl 0996.35043 [26] El-wakil, S.A.; Abdou, M.A.; Elhanbaly, A., New solitons and periodic wave solutions for nonlinear evolution equations, Physics letters A, 353, 40-47, (2006) [27] Wu, X.H.; He, J.H., Exp-function method and its application to nonlinear equations, Chaos, solitons and fractals, 38, 3, 903-910, (2008) · Zbl 1153.35384 [28] Zhang, S., Application of exp-function method to a KdV equation with variable coefficients, Physics letters A, 365, 5-6, 448-453, (2007) · Zbl 1203.35255 [29] Bekir, A.; Boz, A., Exact solutions for a class of nonlinear partial differential equations using exp-function method, International journal of nonlinear sciences and numerical simulation, 8, 4, 505, (2007) [30] Ebaid, A., Exact solitary wave solutions for some nonlinear evolution equations via exp-function method, Physics letters A, 365, 3, 213-219, (2007) · Zbl 1203.35213 [31] Zhu, S.D., Exp-function method for the hybrid-lattice system, International journal of nonlinear sciences and numerical simulation, 8, 3, 461, (2007) [32] Zhu, S.D., Exp-function method for the discrete mkdv lattice, International journal of nonlinear sciences and numerical simulation, 8, 3, 465, (2007) [33] Wang, M.L.; Li, X.Z., Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations, Physics letters A, 343, 48-54, (2005) · Zbl 1181.35255 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.