×

zbMATH — the first resource for mathematics

On the ergodicity of partially hyperbolic systems. (English) Zbl 1196.37057
A partially hyperbolic diffeomorphism of a compact manifold \(M\) is called accessible if any point of \(M\) can be reached from any other point along a path that is a concatenation of finitely many subpaths each of which lies entirely in a single leaf of the strong stable (or unstable) foliation. A diffeomorphism \(f\) is called essentially accessible if every measurable set that is a union of entire accessibility classes has either full or zero measure. It was conjectured by C. Pugh and M. Shub [J. Complexity 13, No. 1, 125–179 (1997; Zbl 0883.58025)] that if \(f\) is a \(C^2\), partially hyperbolic, volume preserving diffeomorphism, then essential accessibility of \(f\) implies ergodicity. The authors prove this conjecture under a so-called center bunching condition (which is satisfied, for example, if the center bundle is one-dimensional).

MSC:
37D30 Partially hyperbolic systems and dominated splittings
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
PDF BibTeX XML Cite
Full Text: DOI Link arXiv
References:
[1] F. Abdenur and M. Viana, ”Flavors of partial hyperbolicity,” , Preprint , 2008.
[2] D. V. Anosov, ”Geodesic flows on closed Riemannian manifolds of negative curvature,” Trudy Mat. Inst. Steklov., vol. 90, p. 209, 1967. · Zbl 0176.19101
[3] D. V. Anosov and J. G. Sinaui, ”Certain smooth ergodic systems,” Uspehi Mat. Nauk, vol. 22, iss. 5 (137), pp. 107-172, 1967. · Zbl 0177.42002
[4] M. Brin, ”Ergodicity of the geodesic flow.” Basel: Birkhäuser, 1995, p. viii. · Zbl 0834.53003
[5] M. I. Brin and J. B. Pesin, ”Partially hyperbolic dynamical systems,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 38, pp. 170-212, 1974. · Zbl 0304.58017
[6] K. Burns and A. Wilkinson, ”Better center bunching,” , Preprint , 2005. · Zbl 1154.37332
[7] K. Burns and A. Wilkinson, ”A note on unstable holonomy between centers,” , Preprint , 2006.
[8] K. Burns and A. Wilkinson, ”Dynamical coherence and center bunching,” , Preprint , 2006. · Zbl 1154.37332
[9] K. Burns, C. Pugh, M. Shub, and A. Wilkinson, ”Recent results about stable ergodicity,” in Smooth Ergodic Theory and its Applications, Katok, A., de la Llave, R., Pesin, Y., and Weiss, H., Eds., Amer. Math. Soc., 2001, pp. 327-366. · Zbl 1012.37019
[10] D. Dolgopyat, ”On differentiability of SRB states for partially hyperbolic systems,” Invent. Math., vol. 155, iss. 2, pp. 389-449, 2004. · Zbl 1059.37021
[11] D. Dolgopyat and A. Wilkinson, ”Stable accessibility is \(C^1\) dense,” Astérisque, iss. 287, p. xvii, 33-60, 2003. · Zbl 1213.37053
[12] M. Grayson, C. Pugh, and M. Shub, ”Stably ergodic diffeomorphisms,” Ann. of Math., vol. 140, iss. 2, pp. 295-329, 1994. · Zbl 0824.58032
[13] B. Hasselblatt, ”Periodic bunching and invariant foliations,” Math. Res. Lett., vol. 1, iss. 5, pp. 597-600, 1994. · Zbl 0845.58043
[14] B. Hasselblatt and A. Wilkinson, ”Prevalence of non-Lipschitz Anosov foliations,” Ergodic Theory Dynam. Systems, vol. 19, iss. 3, pp. 643-656, 1999. · Zbl 1069.37031
[15] M. Hirayama and Y. Pesin, ”Non-absolutely continuous foliations,” Israel J. Math., vol. 160, pp. 173-187, 2007. · Zbl 1137.37014
[16] E. Hopf, ”Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung,” Ber. Verh. Sächs. Akad. Wiss. Leipzig, vol. 91, pp. 261-304, 1939. · Zbl 0024.08003
[17] F. Rodríguez Hertz, M. A. Rodríguez Hertz, and R. Ures, ”Accessibility and stable ergodicity for parially hyperbolic diffeomorphisms with 1D-center bundle,” Invent. Math., vol. 172, pp. 353-381, 2008. · Zbl 1136.37020
[18] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, New York: Springer-Verlag, 1977. · Zbl 0355.58009
[19] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge: Cambridge Univ. Press, 1995. · Zbl 0878.58020
[20] J. Milnor, ”Fubini foiled: Katok’s paradoxical example in measure theory,” Math. Intelligencer, vol. 19, iss. 2, pp. 30-32, 1997. · Zbl 0883.28004
[21] Y. B. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, Zürich: European Mathematical Society, 2004. · Zbl 1098.37024
[22] C. Pugh and M. Shub, ”Ergodicity of Anosov actions,” Invent. Math., vol. 15, pp. 1-23, 1972. · Zbl 0236.58007
[23] C. Pugh and M. Shub, ”Stably ergodic dynamical systems and partial hyperbolicity,” J. Complexity, vol. 13, iss. 1, pp. 125-179, 1997. · Zbl 0883.58025
[24] C. Pugh and M. Shub, ”Stable ergodicity and julienne quasi-conformality,” J. Eur. Math. Soc. (JEMS), vol. 2, iss. 1, pp. 1-52, 2000. · Zbl 0964.37017
[25] C. Pugh, M. Shub, and A. Wilkinson, ”Hölder foliations,” Duke Math. J., vol. 86, iss. 3, pp. 517-546, 1997. · Zbl 0877.58045
[26] C. Pugh, M. Shub, and A. Wilkinson, ”Correction to \citePSW,” Duke Math. J., vol. 105, iss. 1, pp. 105-106, 2000.
[27] J. Schmeling and R. Siegmund-Schultze, ”Hölder continuity of the holonomy maps for hyperbolic basic sets, I,” in Ergodic Theory and Related Topics, III, Krengel, U., Richter, K., and Warstat, V., Eds., New York: Springer-Verlag, 1992, pp. 174-191. · Zbl 0766.58043
[28] M. Shub and A. Wilkinson, ”Stably ergodic approximation: Two examples,” Ergodic Theory Dynam. Systems, vol. 20, iss. 3, pp. 875-893, 2000. · Zbl 0970.37022
[29] M. Shub and A. Wilkinson, ”Pathological foliations and removable zero exponents,” Invent. Math., vol. 139, iss. 3, pp. 495-508, 2000. · Zbl 0976.37013
[30] A. Wilkinson, ”Stable ergodicity of the time-one map of a geodesic flow,” Ergodic Theory Dynamical Systems, vol. 18, iss. 6, pp. 1545-1587, 1998. · Zbl 0915.58079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.