×

Inverse spectral problem for analytic domains. II: \(\mathbb Z_2\)-symmetric domains. (English) Zbl 1196.58016

Summary: This paper develops and implements a new algorithm for calculating wave trace invariants of a bounded plane domain around a periodic billiard orbit. The algorithm is based on a new expression for the localized wave trace as a special multiple oscillatory integral over the boundary, and on a Feynman diagrammatic analysis of the stationary phase expansion of the oscillatory integral. The algorithm is particularly effective for Euclidean plane domains possessing a \(\mathbb Z_2\) symmetry which reverses the orientation of a bouncing ball orbit. It is also very effective for domains with dihedral symmetries. For simply connected analytic Euclidean plane domains in either symmetry class, we prove that the domain is determined within the class by either its Dirichlet or Neumann spectrum. This improves and generalizes the best prior inverse result that simply connected analytic plane domains with two symmetries are spectrally determined within that class.
[For part I of this paper see the author, Commun. Math. Phys. 248, No. 2, 357–407 (2004; Zbl 1086.58016).]

MSC:

58J53 Isospectrality
35R30 Inverse problems for PDEs
35P20 Asymptotic distributions of eigenvalues in context of PDEs

Citations:

Zbl 1086.58016

Software:

OpenCourseWare

References:

[1] S. Axelrod, ”Overview and warmup example for perturbation theory with instantons,” in Geometry and Physics, Andersen, J. E., Dupont, J., Pedersen, H., and Swann, A., Eds., New York: Dekker, 1997, pp. 321-338. · Zbl 0867.58011
[2] D. Alonso and P. Gaspard, ”\(\hslash\) expansion for the periodic orbit quantization of chaotic systems,” Chaos, vol. 3, iss. 4, pp. 601-612, 1993. · Zbl 1055.81541 · doi:10.1063/1.165964
[3] R. Bacher, , personal communication note , 2002.
[4] R. Balian and C. Bloch, ”Distribution of eigenfrequencies for the wave equation in a finite domain, I: Three-dimensional problem with smooth boundary surface,” Ann. Physics, vol. 60, pp. 401-447, 1970. · Zbl 0207.40202 · doi:10.1016/0003-4916(70)90497-5
[5] R. Balian and C. Bloch, ”Distribution of eigenfrequencies for the wave equation in a finite domain, III: Eigenfrequency density oscillations,” Ann. Physics, vol. 69, pp. 76-160, 1972. · Zbl 0226.35070 · doi:10.1016/0003-4916(72)90006-1
[6] B. Burmeister, ”Korrekturen zur Gutzwillerschen Spurformel für Quantenbillards,” PhD Thesis , Universität Hamburg, 1995.
[7] L. Carlitz, ”Many-term relations for multiple Dedekind sums,” Indian J. Math., vol. 20, iss. 1, pp. 77-89, 1978. · Zbl 0418.10013
[8] G. Carron, ”Déterminant relatif et la fonction Xi,” Amer. J. Math., vol. 124, iss. 2, pp. 307-352, 2002. · Zbl 1014.34015 · doi:10.1353/ajm.2002.0011
[9] Y. Colin de Verdière, ”Sur les longueurs des trajectoires périodiques d’un billard,” in Geometrie Symplectique et de Contact: Autour du Theorème de Poincaré-Birkhoff, Dazord, P. and Desolneux-Moulis, N., Eds., Paris: Hermann, 1984, pp. 122-139. · Zbl 0599.58039
[10] P. J. Davis, Circulant Matrices, New York: John Wiley, 1979. · Zbl 0418.15017
[11] J. -P. Eckmann and C. -A. Pillet, ”Zeta functions with Dirichlet and Neumann boundary conditions for exterior domains,” Helv. Phys. Acta, vol. 70, iss. 1-2, pp. 44-65, 1997. · Zbl 0871.35070
[12] P. Etingof, ”Lecture Notes on Quantum Field Theory,” MIT, OpenCourseWare , 2002.
[13] G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, 1976. · Zbl 0325.35001
[14] D. Fried, ”Cyclic resultants of reciprocal polynomials,” in Holomorphic dynamics, Gómez-Mont, X., Seade, J., and Verjovsky, A., Eds., New York: Springer-Verlag, 1988, pp. 124-128. · Zbl 0666.57008
[15] M. Ghomi, ”Shortest periodic billiard trajectories in convex bodies,” Geom. Funct. Anal., vol. 14, iss. 2, pp. 295-302, 2004. · Zbl 1059.52006 · doi:10.1007/s00039-004-0458-7
[16] C. Gordon, D. Webb, and S. Wolpert, ”Isospectral plane domains and surfaces via Riemannian orbifolds,” Invent. Math., vol. 110, iss. 1, pp. 1-22, 1992. · Zbl 0778.58068 · doi:10.1007/BF01231320
[17] V. Guillemin, ”Wave-trace invariants,” Duke Math. J., vol. 83, iss. 2, pp. 287-352, 1996. · Zbl 0858.58051 · doi:10.1215/S0012-7094-96-08311-8
[18] V. Guillemin and R. Melrose, ”The Poisson summation formula for manifolds with boundary,” Adv. in Math., vol. 32, iss. 3, pp. 204-232, 1979. · Zbl 0421.35082 · doi:10.1016/0001-8708(79)90042-2
[19] A. Hassell and S. Zelditch, ”Quantum ergodicity of boundary values of eigenfunctions,” Comm. Math. Phys., vol. 248, iss. 1, pp. 119-168, 2004. · Zbl 1054.58022 · doi:10.1007/s00220-004-1070-2
[20] L. Hörmander, The Analysis of Linear Partial Differential Operators, I: Distribution Theory and Fourier Analysis, New York: Springer-Verlag, 1983. · Zbl 0521.35001
[21] A. Iantchenko, J. Sjöstrand, and M. Zworski, ”Birkhoff normal forms in semi-classical inverse problems,” Math. Res. Lett., vol. 9, iss. 2-3, pp. 337-362, 2002. · Zbl 1011.35144 · doi:10.1353/ajm.2002.0022
[22] D. Kershaw, ”The explicit inverses of two commonly occurring matrices,” Math. Comp., vol. 23, pp. 189-191, 1969. · Zbl 0177.20201 · doi:10.2307/2005071
[23] V. V. Kozlov and D. V. Treshchëv, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, Providence, RI: Amer. Math. Soc., 1991. · Zbl 0729.34027
[24] V. A. Marchenko, Sturm-Liouville Operators and Applications, Basel: Birkhäuser, 1986. · Zbl 0592.34011
[25] S. Marvizi and R. Melrose, ”Spectral invariants of convex planar regions,” J. Differential Geom., vol. 17, iss. 3, pp. 475-502, 1982. · Zbl 0492.53033
[26] V. M. Petkov and L. N. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, New York: Wiley, 1992. · Zbl 0761.35077
[27] J. Sjöstrand and M. Zworski, ”Quantum monodromy and semi-classical trace formulae,” J. Math. Pures Appl., vol. 81, iss. 1, pp. 1-33, 2002. · Zbl 1038.58033 · doi:10.1016/S0021-7824(01)01230-2
[28] M. E. Taylor, Partial Differential Equations, I: Basic Theory, New York: Springer-Verlag, 1996. · Zbl 0869.35003
[29] M. E. Taylor, Partial differential equations, II: Qualitative studies of linear equations, New York: Springer-Verlag, 1996. · Zbl 0869.35003
[30] A. Vasy, ”Propagation of singularities for the wave equation on manifolds with corners,” in Séminaire: Équations aux Dérivées Partielles. 2004-2005, Palaiseau: École Polytech., 2005, p. x.
[31] A. Vasy, ”Propagation of singularities for the wave equation on manifolds with corners,” Ann. of Math., vol. 168, iss. 3, pp. 749-812, 2008. · Zbl 1171.58007 · doi:10.4007/annals.2008.168.749
[32] S. Zelditch, ”Spectral determination of analytic bi-axisymmetric plane domains,” Math. Res. Lett., vol. 6, iss. 3-4, pp. 457-464, 1999. · Zbl 0960.58017 · doi:10.4310/MRL.1999.v6.n4.a8
[33] S. Zelditch, ”Spectral determination of analytic bi-axisymmetric plane domains,” Geom. Funct. Anal., vol. 10, iss. 3, pp. 628-677, 2000. · Zbl 0961.58012 · doi:10.1007/PL00001633
[34] S. Zelditch, ”The inverse spectral problem for surfaces of revolution,” J. Differential Geom., vol. 49, iss. 2, pp. 207-264, 1998. · Zbl 0938.58027
[35] S. Zelditch, ”Inverse resonance problem for \(\mathbb Z_2\)-symmetric analytic obstacles in the plane,” in Geometric Methods in Inverse Problems and PDE Control, Croke, C. B., Lasiecka, I., Uhlmann, G., and Vogelius, M. S., Eds., New York: Springer-Verlag, 2004, pp. 289-321. · Zbl 1061.35176
[36] S. Zelditch, ”Inverse spectral problem for analytic domains. I: Balian-Bloch trace formula,” Comm. Math. Phys., vol. 248, iss. 2, pp. 357-407, 2004. · Zbl 1086.58016 · doi:10.1007/s00220-004-1074-y
[37] S. Zelditch, ”Inverse spectral problem for analytic domains, II: Domains with symmetry,” , preprint , 2001. · Zbl 1196.58016
[38] H. Hezari, ”Inverse spectral problem for Schrödinger operators,” , preprint , 2008. · Zbl 1170.81042 · doi:10.1007/s00220-008-0718-8
[39] H. Hezari and S. Zelditch, ”Inverse spectral problem for analytic \(\mathbb Z_2^n\)-symmetric domains in \(\mathbb R^n\),” , preprint. · Zbl 1226.35055 · doi:10.1007/s00039-010-0059-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.