Schwartzman, Armin; Mascarenhas, Walter F.; Taylor, Jonathan E. Inference for eigenvalues and eigenvectors of Gaussian symmetric matrices. (English) Zbl 1196.62067 Ann. Stat. 36, No. 6, 2886-2919 (2008). Summary: This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, \(3\times 3\) and \(2\times 2\) symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure. Cited in 22 Documents MSC: 62H12 Estimation in multivariate analysis 62H15 Hypothesis testing in multivariate analysis 62H35 Image analysis in multivariate analysis 15A18 Eigenvalues, singular values, and eigenvectors 62H11 Directional data; spatial statistics Keywords:random matrix; maximum likelihood; likelihood ratio test; orthogonally invariant; submanifold; curved exponential family × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Arsigny, V., Fillard, P., Pennec, X. and Ayache, N. (2005). Fast and simple calculus on tensors in the log-Euclidean framework. MICCAI 2005. Lecture Notes in Comput. Sci. 3749 115-122. [2] Arsigny, V., Fillard, P., Pennec, X. and Ayache, N. (2007). Geometric means in a novel vector space structure on symmetric positive definite matrices. SIAM. J. Matrix Anal. Appl. 29 328-347. · Zbl 1144.47015 · doi:10.1137/050637996 [3] Basser, P. J. and Pajevic, S. (2003). A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI. IEEE Trans. Med. Imaging 22 785-794. [4] Basser, P. J. and Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111 209-219. [5] Chang, T. (1986). Spherical regression. Ann. Statist. 14 907-924. · Zbl 0605.62079 · doi:10.1214/aos/1176350041 [6] Chernoff, H. (1954). On the distribution of the likelihood ratio. Ann. Math. Statist. 25 573-578. · Zbl 0056.37102 · doi:10.1214/aoms/1177728725 [7] Chikuse, Y. (2003). Statistics on Special Manifolds . Springer, New York. · Zbl 1026.62051 [8] Drton, M. (2008). Likelihood ratio tests and singularities. Ann. Statist. · Zbl 1196.62020 · doi:10.1214/07-AOS571 [9] Dykstra, R. L. (1983). An algorithm for restricted least squares regression. J. Amer. Statist. Assoc. 78 837-842. JSTOR: · Zbl 0535.62063 · doi:10.2307/2288193 [10] Edelman, A., Arias, T. A. and Smith, S. T. (1998). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 303-353. · Zbl 0928.65050 · doi:10.1137/S0895479895290954 [11] Efron, B. (1978). The geometry of exponential families. Ann. Statist. 6 362-376. · Zbl 0436.62027 · doi:10.1214/aos/1176344130 [12] Fang, K.-T. and Zhang, Y.-T. (1990). Generalized Multivariate Analysis . Springer, Berlin. · Zbl 0724.62054 [13] Fletcher, P. T. and Joshi, S. (2007). Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing 87 250-262. · Zbl 1186.94126 · doi:10.1016/j.sigpro.2005.12.018 [14] Gupta, A. K. and Nagar, D. K. (2000). Matrix Variate Distributions . Chapman and Hall/CRC Publisher, Boca Raton, FL. · Zbl 0935.62064 [15] Hu, W. and White, M. (1997). A CMB polarization primer. New Astronomy 2 323-344. [16] James, A. T. (1976). Special functions of matrix and single argument in statistics. In Theory and Applications of Special Functions (R. A. Askey, ed.) 497-520. Academic Press, New York. · Zbl 0326.33010 [17] Kogut, A., Spergel, D. N., Barnes, C., Bennett, C. L., Halpern, M., Hinshaw, G., Jarosik, N., Limon, M., Meyer, S. S., Page, L., Tucker, G. S., Wollack, E. and Wright, E. L. (2003). Wilkinson microwave anisotropy probe (WMAP) first year observations: TE polarization. Astrophysical J. Supplement Series 148 161-173. [18] Lang, S. (1999). Fundamentals of Differential Geometry . Springer, New York. · Zbl 0932.53001 [19] Lawson, C. L. and Hanson, B. J. (1974). Solving Least Squares Problems . Prentice-Hall Inc., Englewood Cliffs, NJ. · Zbl 0860.65028 [20] LeBihan, D., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata, S., Molko, N. and Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. J. Magn. Reson. Imaging 13 534-546. [21] Lehman, E. L. (1997). Testing Statistical Hypotheses , 2nd ed. Springer, New York. [22] Mallows, C. L. (1961). Latent vectors of random symmetric matrices. Biometrika 48 133-149. JSTOR: · Zbl 0209.50302 · doi:10.1093/biomet/48.1-2.133 [23] Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis . Academic Press, San Diego, CA. · Zbl 0432.62029 [24] Mehta, M. L. (1991). Random Matrices , 2nd ed. Academic Press, San Diego, CA. · Zbl 0780.60014 [25] Moakher, M. (2002). Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24 1-16. · Zbl 1028.47014 · doi:10.1137/S0895479801383877 [26] Pajevic, S. and Basser, P. J. (2003). Parametric and nonparametric statistical analysis of DT-MRI data. J. Magn. Reson. 161 1-14. [27] Raubertas, R. R. (2006). Pool-adjacent-violators algorithm. In Encyclopedia of Statistical Sciences . Wiley, New York. [28] Robertson, T. and Wegman, E. J. (1978). Likelihood ratio tests for order restructions in exponential families. Anns. Statist. 6 485-505. · Zbl 0391.62016 · doi:10.1214/aos/1176344195 [29] Scheffé, H. (1970). Practical solutions to the Behrens-Fisher problem. J. Amer. Statist. Assoc. 65 1501-1508. JSTOR: · Zbl 0224.62009 · doi:10.2307/2284332 [30] Schwartzman, A. (2006). Random ellipsoids and false discovery rates: statistics for diffusion tensor imaging data . Ph.D. dissertation, Stanford Univ. [31] Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Amer. Statist. Assoc. 82 605-610. JSTOR: · Zbl 0639.62020 · doi:10.2307/2289471 [32] Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20 595-601. · Zbl 0034.22902 · doi:10.1214/aoms/1177729952 [33] Whitcher, B., Wisco, J. J., Hadjikhani, N. and Tuch, D. S. (2007). Statistical group comparison of diffusion tensors via multivariate hypothesis testing. Magn. Reson. Med. 57 1065-1074. [34] Zhu, H., Zhang, H., Ibrahim, J. G. and Peterson, B. S. (2007). Statistical analysis of diffusion in diffusion-weighted magnetic resonance imaging data. J. Amer. Statist. Assoc. 102 1085-1102. · Zbl 1332.62222 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.