zbMATH — the first resource for mathematics

Fractals with point impact in functional linear regression. (English) Zbl 1196.62116
Summary: This paper develops a point impact linear regression model in which the trajectory of a continuous stochastic process, when evaluated at a sensitive time point, is associated with a scalar response. The proposed model complements and is more interpretable than the functional linear regression approach that has become popular in recent years. The trajectories are assumed to have fractal (self-similar) properties in common with a fractional Brownian motion with an unknown Hurst exponent. Bootstrap confidence intervals based on the least-squares estimator of the sensitive time point are developed. Misspecification of the point impact model by a functional linear model is also investigated. Non-Gaussian limit distributions and rates of convergence determined by the Hurst exponent play an important role.

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G08 Nonparametric regression and quantile regression
62M09 Non-Markovian processes: estimation
62E20 Asymptotic distribution theory in statistics
62J05 Linear regression; mixed models
60J65 Brownian motion
longmemo; fda (R)
Full Text: DOI arXiv
[1] Beran, J. (1994). Statistics for Long-Memory Processes . Chapman and Hall, New York. · Zbl 0869.60045
[2] Bhattacharya, P. K. and Brockwell, P. J. (1976). The minimum of an additive process with applications to signal to signal estimation and storage theory. Z. Wahrsch. Verw. Gebiete 37 51-75. · Zbl 0326.60053
[3] Bickel, P. and Freedman, D. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196-1217. · Zbl 0449.62034
[4] Billingsley, P. (1999). Convergence of Probability Measures , 2nd ed. Wiley, New York. · Zbl 0944.60003
[5] Buness, A. et al. (2007). Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer. Bioinformatics 23 2273-2280.
[6] Chernoff, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math. 16 31-41. · Zbl 0212.21802
[7] Coeurjolly, J.-F. (2008). Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Ann. Statist. 36 1404-1434. · Zbl 1157.60034
[8] Dudoit, S. and van der Laan, M. J. (2008). Multiple Testing Procedures with Applications to Genomics . Springer, New York. · Zbl 1261.62014
[9] Embrechts, P. and Maejima, M. (2002). Selfsimilar Processes . Princeton Univ. Press, Princeton. · Zbl 1008.60003
[10] Emilsson, V. et al. (2008). Genetics of gene expression and its effect on disease. Nature 452 423-428.
[11] Gneiting, T. and Schlather, M. (2004). Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46 269-282. · Zbl 1062.60053
[12] Groeneboom, P. and Wellner, J. A. (2001). Computing Chernoff’s distribution. J. Comput. Graph. Statist. 10 388-400. JSTOR: · Zbl 04567029
[13] Gruvberger-Saal, S. K. et al. (2004). Predicting continuous values of prognostic markers in breast cancer from microarray gene expression profiles. Molecular Cancer Therapeutics 3 161-168.
[14] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926-1947. · Zbl 0795.62036
[15] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191-219. · Zbl 0703.62063
[16] Kosorok, M. (2008). Bootstrapping the Grenander estimator. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honour of Professor Pranab K. Sen (N. Balakrishnan, E. Pena and M. Silvapulle, eds.) 282-292. IMS, Beachwood, OH.
[17] Kosorok, M. (2008). Introduction to Empirical Processes and Semiparametric Inference . Springer, New York. · Zbl 1180.62137
[18] Koul, H. L., Qian, L. and Surgailis, D. (2003). Asymptotics of M-estimators in two-phase linear regression models. Stochastic Process. Appl. 103 123-154. · Zbl 1075.62021
[19] Lieberman-Aiden, E., van Berkum, N. L., Williams, L. et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326 289-293.
[20] Léger, C. and MacGibbon, B. (2006). On the bootstrap in cube root asymptotics. Canad. J. Statist. 34 29-44. · Zbl 1096.62036
[21] Lindquist, M. A. and McKeague, I. W. (2009). Logistic regression with Brownian-like predictors. J. Amer. Statist. Assoc. 104 1575-1585. · Zbl 1205.62125
[22] Mandelbrot, B. B. and Van Ness, J. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 422-437. JSTOR: · Zbl 0179.47801
[23] Mandelbrot, B. B. (1982). The Fractal Geometry of Nature . Freeman, New York. · Zbl 0504.28001
[24] Müller, H.-G. and Song, K.-S. (1997). Two-stage change-point estimators in smooth regression models. Statist. Probab. Lett. 34 323-335. · Zbl 0874.62035
[25] Neumeyer, N. (2009). Smooth residual bootstrap for empirical processes of non-parametric regression residuals. Scand. J. Statist. 36 204-228. · Zbl 1194.62051
[26] Novikov, A. and Valkeila, E. (1999). On some maximal inequalities for fractional Brownian motions. Statist. Probab. Lett. 44 47-54. · Zbl 0947.60033
[27] Ramsay, J. O. and Silverman, B. W. (2006). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 0882.62002
[28] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Springer, New York. · Zbl 0917.60006
[29] Richardson, A. L., Wang, Z. C., De Nicolo, A., Lu, X. et al. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9 121-132.
[30] Salas-Gonzalez, D., Kuruoglu, E. E. and Ruiz, D. P. (2009). Modelling and assessing differential gene expression using the alpha stable distribution. Int. J. Biostat. 5 23.
[31] Sethuraman, J. (1961). Some limit theorems for joint distributions. Sankhyā Ser. A 23 379-386. · Zbl 0101.13002
[32] Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap . Springer, New York. · Zbl 0947.62501
[33] Singh, K. (1981). On asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187-1195. · Zbl 0494.62048
[34] Stryhn, H. (1996). The location of the maximum of asymmetric two-sided Brownian motion with triangular drift. Statist. Probab. Lett. 29 279-284. · Zbl 1059.60504
[35] van der Vaart, A. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes . Springer, New York. · Zbl 0862.60002
[36] Van Keilegom, I., González-Manteiga, W. and Sánchez Sellero, C. (2008). Goodness-of-fit tests in parametric regression based on the estimation of the error distribution. Test 17 401-415. · Zbl 1196.62049
[37] Yao, Y.-C. (1987). Approximating the distribution of the maximum likelihood estimate of the change-point in a sequence of independent random variables. Ann. Statist. 15 1321-1328. · Zbl 0651.62017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.