Brown, Elizabeth R. Assessing the association between trends in a biomarker and risk of event with an application in pediatric HIV/AIDS. (English) Zbl 1196.62136 Ann. Appl. Stat. 3, No. 3, 1163-1182 (2009). Summary: We present a new joint longitudinal and survival model aimed at estimating the association between the risk of an event and the change in and history of a biomarker that is repeatedly measured over time. We use cubic B-spline models for the longitudinal component that lend themselves to straight-forward formulations of the slope and integral of the trajectory of the biomarker. The model is applied to data collected in a long term follow-up study of HIV infected infants in Uganda. Estimation is carried out using MCMC methods. We also explore, using the deviance information criteria, the conditional predictive ordinate and ROC curves for model selection and evaluation. Cited in 9 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 62N02 Estimation in survival analysis and censored data 65D07 Numerical computation using splines 65C40 Numerical analysis or methods applied to Markov chains 92C50 Medical applications (general) 65C60 Computational problems in statistics (MSC2010) Keywords:HIV/AIDS; disease progression; mother-to-child transmission; joint longitudinal and survival models; biomarker change Software:CODA; survivalROC; R × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Brown, E. R., Ibrahim, J. G. and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 61 64-73. · Zbl 1077.62102 · doi:10.1111/j.0006-341X.2005.030929.x [2] Chen, M.-H., Shao, Q.-M. and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation . Springer-Verlag, New York. · Zbl 0949.65005 · doi:10.1007/978-1-4612-1276-8 [3] de Boor, C. (2001). A Practical Guide to Splines (revised ed.). Springer-Verlag, New York. · Zbl 0987.65015 [4] Faucett, C. L. and Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statist. Med. 15 1663-1685. [5] Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford University Press, Oxford. [6] Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409. · Zbl 0702.62020 · doi:10.2307/2289776 [7] Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41 337-348. · Zbl 0825.62407 · doi:10.2307/2347565 [8] Guay, L., Musoke, P., Fleming, T., Bagenda, D., Allen, M., Nakabiito, C., Sherman, J., Bakaki, P., Ducar, C., Deseyve, M., Emel, L., Mirochnick, M., Fowler, M., Mofenson, L., Miotti, P., Dransfield, K., Bray, D., Mmiro, F. and Jackson, J. (1999). Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet 354 795-802. [9] Han, J., Slate, E. H. and Pena, E. A. (2007). Parametric latent class joint model for a longitudinal biomarker and recurrent events. Statist. Med. 26 5285-5302. · doi:10.1002/sim.2915 [10] Heagerty, P. J., Lumley, T. and Pepe, M. S. (2000). Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56 337-344. · Zbl 1060.62622 · doi:10.1111/j.0006-341X.2000.00337.x [11] Jackson, J., Musoke, P., Fleming, T., Guay, L., Bagenda, D., Allen, M., Nakabiito, C., Sherman, J., Bakaki, P., Owor, M., Ducar, C., Deseyve, M., Mwatha, A., Emel, L., Duefield, C., Mirochnick, M., Fowler, M., Mofenson, L., Miotti, P., Gigliotti, M., Bray, D. and Mmiro, F. (2003). Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: 18-month follow-up of the HIVNET 012 randomised trial. Lancet 362 859-868. [12] Lin, H., Turnbull, B. W., McCulloch, C. E. and Slate, E. H. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer. J. Amer. Statist. Assoc. 97 . · Zbl 1073.62582 · doi:10.1198/016214502753479220 [13] Mellors, J. W., Margolick, J. B., Phair, J. P., Rinaldo, C. R., Detels, R., Jacobson, L. P. and Munoz, A. (2007). Prognostic value of HIV-1 RNA, CD4 cell count, and CD4 cell count slope for progression to AIDS and death in untreated HIV-1 infection. J. Amer. Med. Assoc. 297 2349-2350. [14] Neal, R. M. (2003). Slice sampling. Ann. Statist. 31 705-767. · Zbl 1051.65007 · doi:10.1214/aos/1056562461 [15] Plummer, M., Best, N., Cowles, K. and Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News 6 7-11. Available at http://CRAN.R-project.org/doc/Rnews/. [16] Proust-Lima, C., Joly, P., Dartigues, J. and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. Comput. Statist. Data Anal. 53 1142-1154. · Zbl 1452.62841 [17] Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69 331-342. · Zbl 0523.62083 · doi:10.1093/biomet/69.2.331 [18] Proust-Lima, C., Letenneur, L. and Jacqmin-Gadda, H. (2007). A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome. Statist. Med. 26 2229-2245. · doi:10.1002/sim.2659 [19] R Development Core Team (2006). R: A Language and Environment for Statistical Computing , R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.R-project.org. [20] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of complexity and fit. J. Roy. Statist. Soc. Ser. B 64 583-639. · Zbl 1067.62010 · doi:10.1111/1467-9868.00353 [21] Tsiatis, A. and Davidian, M. (2004). An overview of joint modeling of longitudinal and time-to-event data. Statist. Sinica 14 793-818. · Zbl 1073.62087 [22] Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53 330-339. · Zbl 0874.62140 · doi:10.2307/2533118 [23] Ye, W., Lin, X. and Taylor, J. M. G. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data-A two-stage regression calibration approach. Biometrics 64 1238-1246. · Zbl 1151.62093 · doi:10.1111/j.1541-0420.2007.00983.x [24] Yu, M., Taylor, J. M. G. and Sandler, H. M. (2008). Individual prediction in prostate cancer studies using a joint longitudinal survival cure model. J. Amer. Statist. Assoc. 103 178-187. · Zbl 1469.62383 · doi:10.1198/016214507000000400 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.