Dehghan, Mehdi; Hajarian, Masoud On the reflexive and anti-reflexive solutions of the generalised coupled Sylvester matrix equations. (English) Zbl 1196.65081 Int. J. Syst. Sci. 41, No. 6, 607-625 (2010). Authors’ abstract: The generalised coupled Sylvester matrix equations \[ \begin{aligned} AXB + CYD &= J\\ EXF+GYH&=K,\end{aligned} \]with unknown matrices \(X\) and \(Y\), have important applications in control and system theory. Also, it is well known that reflexive and anti-reflexive matrices have wide applications in many fields. In this article, we consider the generalised coupled Sylvester matrix equations over reflexive and anti-reflexive matrices. First we propose two new matrix equations equivalent to the generalised coupled Sylvester matrix equations over reflexive and anti-reflexive matrices, respectively. Then, two new iterative algorithms are proposed for solving these matrix equations. A convergence analysis of the proposed iterative algorithms is derived. Finally, some numerical examples are presented to illustrate the theoretical results of this article. Reviewer: Sheng Chen (Harbin) Cited in 23 Documents MSC: 65F30 Other matrix algorithms (MSC2010) 15A24 Matrix equations and identities 65F10 Iterative numerical methods for linear systems Keywords:generalised coupled Sylvester matrix equations; reflexive matrix; anti-reflexive matrix; iterative algorithm; Frobenius norm; convergence; numerical examples PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{M. Hajarian}, Int. J. Syst. Sci. 41, No. 6, 607--625 (2010; Zbl 1196.65081) Full Text: DOI References: [1] DOI: 10.1016/j.apnum.2006.07.005 · Zbl 1118.65028 [2] DOI: 10.1016/0005-1098(95)00037-W · Zbl 0825.93992 [3] DOI: 10.1137/S0895479895288759 · Zbl 0910.15005 [4] Chen HC, Parallel Computations and Their Impact on Mechanics (AMD-Vol. 86) pp 101– (1987) [5] DOI: 10.1016/S0024-3795(87)90314-4 · Zbl 0631.15006 [6] DOI: 10.1109/TAC.2005.852558 · Zbl 1365.65083 [7] DOI: 10.1016/j.automatica.2005.03.026 · Zbl 1086.93063 [8] DOI: 10.1109/TAC.2005.843856 · Zbl 1365.93551 [9] Dullerud GE, A Course in Robust Control Theory–A Convex Approach (2000) [10] Golub GH, Matrix Computations,, 3. ed. (1996) [11] DOI: 10.1023/A:1014807923223 · Zbl 0992.65040 [12] DOI: 10.1137/0613009 · Zbl 0746.65027 [13] DOI: 10.1016/S0304-3975(00)00322-4 · Zbl 0972.68183 [14] DOI: 10.1016/j.amc.2005.12.055 · Zbl 1148.65029 [15] Peng YX, Applied Mathematics and Computations 160 pp 763– (2005) · Zbl 1068.65056 [16] DOI: 10.1016/j.apnum.2007.01.025 · Zbl 1136.65046 [17] DOI: 10.1016/0024-3795(91)90384-9 · Zbl 0736.65031 [18] DOI: 10.1016/j.cam.2005.04.006 · Zbl 1088.15015 [19] DOI: 10.1016/j.cam.2008.06.014 · Zbl 1161.65034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.