zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems. (English) Zbl 1196.65117
Summary: In this paper we make an extensive analysis of the imaginary stability of many explicit Runge-Kutta methods with variable coefficients for oscillatory problems. The Runge-Kutta methods considered are based on several construction procedures such as exponential fitting, phase-fitting or dissipative-fitting (the latter two techniques can be combined). Two-dimensional regions of imaginary stability for the first-order test model are obtained. These regions are a generalization of the imaginary stability intervals of classical Runge-Kutta methods. To have an idea of the numerical performance of the methods we have also made a phase-lag and dissipation analysis.

MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
WorldCat.org
Full Text: DOI
References:
[1] Bettis, D. G.: Runge -- Kutta algorithms for oscillatory problems. Zamp 30, 699-704 (1979) · Zbl 0412.65038
[2] Ixaru, L. Gr.; Berghe, G. Vanden: Exponential Fitting. Mathematics and its applications (2004) · Zbl 1105.65082
[3] Paternoster, B.: Runge -- $Kutta( -- Nystr\"om)$ methods for odes with periodic solutions based in trigonometric polynomials. Appl. numer. Math. 28, 401-412 (1998) · Zbl 0927.65097
[4] Coleman, J. P.; Duxbury, S. C.: Mixed collocation methods for y″=$f(x,y)$. J. comput. Appl. math. 126, 47-75 (2000) · Zbl 0971.65073
[5] Berghe, G. Vanden; De Meyer, H.; Van Daele, M.; Van Hecke, T.: Exponentially-fitted explicit Runge -- Kutta methods. Comput. phys. Comm. 123, 7-15 (1999) · Zbl 0948.65066
[6] Berghe, G. Vanden; De Meyer, H.; Van Daele, M.; Van Hecke, T.: Exponentially fitted Runge -- Kutta methods. J. comput. Appl. math. 125, 107-115 (2000) · Zbl 0999.65065
[7] Franco, J. M.: An embedded pair of exponentially fitted explicit Runge -- Kutta methods. J. comput. Appl. math. 149, 407-414 (2002) · Zbl 1014.65061
[8] Anastassi, Z. A.; Simos, T. E.: A trigonometrically fitted Runge -- Kutta method for the numerical solution of orbital problems. New astronomy 10, 301-309 (2005) · Zbl 1085.65063
[9] Raptis, A. D.; Simos, T. E.: A four-step phase-fitted method for the numerical integration of the Schrödinger equation. Bit 31, 160-168 (1991) · Zbl 0726.65089
[10] Simos, T. E.: A Runge -- Kutta fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution. Comput. math. Appl. 25, 95-101 (1993) · Zbl 0777.65046
[11] Simos, T. E.: An exponentially-fitted Runge -- Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. phys. Comm. 115, 1-8 (1998) · Zbl 1001.65080
[12] Simos, T. E.: An embedded Runge -- Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. Internat. J. Modern phys. C 11, 1115-1133 (2000) · Zbl 0985.65083
[13] Simos, T. E.; Aguiar, Jesús Vigo: A modified Runge -- Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems. Comput. chem. 25, 275-281 (2001) · Zbl 1064.65069
[14] Simos, T. E.; Aguiar, Jesús Vigo: A modified phase-fitted Runge -- Kutta method for the numerical solution of the Schrödinger equation. J. math. Chem. 30, 121-131 (2001) · Zbl 1003.65082
[15] Tsitouras, Ch.; Simos, T. E.: Optimized Runge -- Kutta pairs for problems with oscillating solutions. J. comput. Appl. math. 147, 397-409 (2002) · Zbl 1013.65073
[16] Anastassi, Z. A.; Simos, T. E.: A dispersive-fitted and dissipative-fitted explicit Runge -- Kutta method for the numerical solution of orbital problems. New astronomy 10, 31-37 (2004)
[17] Anastassi, Z. A.; Simos, T. E.: An optimized Runge -- Kutta method for the solution of orbital problems. J. comput. Appl. math. 175, 1-9 (2005) · Zbl 1063.65059
[18] Anastassi, Z. A.; Simos, T. E.: A trigonometrically fitted Runge -- Kutta method for the numerical solution of the Schrödinger equation. J. math. Chem. 37, 281-293 (2005) · Zbl 1070.81035
[19] Van De Vyver, H.: Comparison of some special optimized fourth-order Runge -- Kutta methods for the numerical solution of the Schrödinger equation. Comput. phys. Comm. 166, 109-122 (2005) · Zbl 1196.81081
[20] Van De Vyver, H.: An embedded $5(4)$ pair of modified explicit Runge -- Kutta methods for the numerical solution of the Schrödinger equation. Internat. J. Modern phys. C 16, 879-894 (2005) · Zbl 1103.65319
[21] H. Van de Vyver, Modified explicit Runge -- Kutta methods for the numerical solution of the Schrödinger equation, Appl. Math. Comput., in press (available via Science Direct) · Zbl 1090.65091
[22] H. Van de Vyver, An embedded modified phase-fitted Runge -- Kutta methods for the numerical solution of the Schrödinger equation and related periodic initial value problems, in preparation · Zbl 1187.65078
[23] Paternoster, B.: A phase-fitted collocation-based Runge -- Kutta -- Nyström method. Appl. numer. Math. 35, 339-355 (2000) · Zbl 0979.65063
[24] Scheifele, G.: On the numerical integration of perturbed oscillators. Zamp 22, 186-210 (1971) · Zbl 0221.65135
[25] González, A. B.; Martín, P.; Farto, J. M.: A new family of Runge -- Kutta type methods for the numerical integration of perturbed oscillators. Numer. math. 82, 635-646 (1999) · Zbl 0935.65075
[26] Franco, J. M.: Runge -- Kutta -- Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. phys. Comm. 147, 770-787 (2002) · Zbl 1019.65050
[27] García, A.; Martín, P.; González, A. B.: New methods for oscillatory problems based on classical codes. Appl. numer. Math. 42, 141-157 (2002) · Zbl 0998.65069
[28] Coleman, J. P.; Ixaru, L. Gr.: P-stability and exponential Fitting methods for y″=$f(x,y)$. IMA J. Numer. anal. 16, 179-199 (1996) · Zbl 0847.65052
[29] Carpentieri, M.; Paternoster, B.: Stability regions of one step mixed collocation methods for y″=$f(x,y)$. Appl. numer. Math. 53, 201-212 (2005) · Zbl 1069.65092
[30] H. Van de Vyver, On the generation of P-stable exponentially fitted Runge -- Kutta -- Nyström methods by exponentially fitted Runge -- Kutta methods, J. Comput. Appl. Math., in press (available via Science Direct) · Zbl 1086.65073
[31] Dekker, K.: Stability of linear multistep methods on the imaginary axis. Bit 21, 66-79 (1981) · Zbl 0472.65068
[32] Franco, J. M.: Stability of explicit ARKN methods for perturbed oscillators. J. comput. Appl. math. 173, 389-396 (2005) · Zbl 1065.65101
[33] Van Der Houwen, P. J.; Sommeijer, B. P.: Explicit Runge -- $Kutta( -- Nystr\"om)$ methods with reduced phase errors for computing oscillating solution. SIAM J. Numer. anal. 24, 595-617 (1987) · Zbl 0624.65058