zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems. (English) Zbl 1196.65123
Summary: A dissipative exponentially-fitted method for the numerical integration of the Schrödinger equation and related problems is developed. The method is called dissipative since is a nonsymmetric multistep method. An application to the the resonance problem of the radial Schrödinger equation and to other well known related problems indicates that the new method is more efficient than the corresponding classical dissipative method and other well known methods. Based on the new method and the method of Raptis and Cash a new variable-step method is obtained. The application of the new variable-step method to the coupled differential equations arising from the Schrödinger equation indicates the power of the new approach.

MSC:
65L10Boundary value problems for ODE (numerical methods)
65L12Finite difference methods for ODE (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] Ixaru, L. Gr.; Micu, M.: Topics in theoretical physics. (1978)
[2] Ixaru, L. Gr.; Rizea, M.: A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. phys. Commun. 19, 23-27 (1980)
[3] Landau, L. D.; Lifshitz, F. M.: Quantum mechanics. (1965) · Zbl 0178.57901
[4] Herzberg, G.: Spectra of diatomic molecules. (1950)
[5] Blatt, J. M.: Practical points concerning the solution of the Schrödinger equation. J. comput. Phys. 1, 382-396 (1967) · Zbl 0182.49702
[6] Cash, J. R.; Raptis, A. D.: A high order method for the numerical solution of the one-dimensional Schrödinger equation. Comput. phys. Commun. 33, 299-304 (1984)
[7] Cash, J. R.; Raptis, A. D.; Simos, T. E.: A sixth-order exponentially fitted method for the numerical solution of the radial Schrödinger equation. J. comput. Phys. 91, 413-423 (1990) · Zbl 0717.65056
[8] Cooley, J. W.: An improved eigenvalue corrector formula for solving Schrödinger’s equation for central fields. Math. comp. 15, 363-374 (1961) · Zbl 0122.35902
[9] Killingbeck, J.: Shooting methods for the Schrödinger equation. J. phys. A: math. Gen. 20, 1411-1417 (1987) · Zbl 0627.65096
[10] Kobeissi, H.; Kobeissi, M.: On testing difference equations for the diatomic eigenvalue problem. J. comput. Chem. 9, 844-850 (1988) · Zbl 0654.65064
[11] Kobeissi, H.; Kobeissi, M.: A new variable step method for the numerical integration of the one-dimensional Schrödinger equation. J. comput. Phys. 77, 501-512 (1988) · Zbl 0654.65064
[12] Kobeissi, H.; Kobeissi, M.; El-Hajj, A.: On computing eigenvalues of the Schrödinger equation for symmetrical potentials. J. phys. A: math. Gen. 22, 287-295 (1989) · Zbl 0677.34023
[13] Kroes, G. J.: The royal road to an energy-conserving predictor-corrector method. Comput. phys. Commun. 70, 41-52 (1992)
[14] Simos, T. E.: Eighth-order methods for accurate computations for the Schrödinger equation. Comput. phys. Commun. 105, 127-138 (1997) · Zbl 0930.65088
[15] Raptis, A. D.: On the numerical solution of the Schrödinger equation. Comput. phys. Commun. 24, 1-4 (1981) · Zbl 0462.73002
[16] Raptis, A. D.: Two-step methods for the numerical solution of the Schrödinger equation. Computing 28, 373-378 (1982) · Zbl 0473.65060
[17] Raptis, A. D.: Exponentially-fitted solutions of the eigenvalue Schrödinger equation with automatic error control. Comput. phys. Commun. 28, 427-431 (1983)
[18] Raptis, A. D.: Exponential multistep methods for ordinary differential equations. Bull. Greek math. Soc. 25, 113-126 (1984) · Zbl 0592.65046
[19] Raptis, A. D.; Allison, A. C.: Exponential-Fitting methods for the numerical solution of the Schrödinger equation. Comput. phys. Commun. 14, 1-5 (1978)
[20] Raptis, A. D.; Cash, J. R.: Exponential and Bessel Fitting methods for the numerical solution of the Schrödinger equation. Comput. phys. Commun. 44, 95-103 (1987) · Zbl 0664.65090
[21] T.E. Simos, Numerical solution of ordinary differential equations with periodical solution. Doctoral Dissertation, National Technical University of Athens, 1990
[22] Simos, T. E.: A four-step method for the numerical solution of the Schrödinger equation. J. comput. Appl. math. 30, 251-255 (1990) · Zbl 0705.65050
[23] Simos, T. E.: Some new four-step exponential-Fitting methods for the numerical solution of the radial Schrödinger equation. IMA J. Numer. anal. 11, 347-356 (1991) · Zbl 0728.65067
[24] Simos, T. E.: Exponential fitted methods for the numerical integration of the Schrödinger equation. Comput. phys. Commun. 71, 32-38 (1992)
[25] Simos, T. E.: Error analysis of exponential-fitted methods for the numerical solution of the one-dimensional Schrödinger equation. Phys. lett. A 177, 345-350 (1993)
[26] Berghe, G. Vanden; Fack, V.; De Meyer, H. E.: Numerical methods for solving radial Schrödinger equation. J. comput. Appl. math. 29, 391-401 (1989) · Zbl 0694.65033
[27] Simos, T. E.; Williams, P. S.: A P-stable hybrid exponentially-fitted method for the numerical solution of the Schrödinger equation. Comput. phys. Commun. 131, 109-119 (2000) · Zbl 0982.65080
[28] Simos, T. E.; Tougelidis, G.: A numerov-type method for computing eigenvalues and resonances of the radial Schrödinger equation. Comput. chemistry 20, 397 (1996) · Zbl 0940.65516
[29] Henrici, P.: Discrete variable methods in ordinary differential equations. (1962) · Zbl 0112.34901
[30] Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. math. 19, 65-75 (1972) · Zbl 0221.65123
[31] Raptis, A. D.: Exponential multistep methods for ordinary differential equations. Bull. Greek math. Soc. 25, 113-126 (1984) · Zbl 0592.65046
[32] Simos, T. E.; Williams, P. S.: A family of numerov-type exponentially-fitted methods for the numerical integration of the Schrödinger equation. Comput. chemistry 21, 403-417 (1997)
[33] Thomas, R. M.; Simos, T. E.: A family of hybrid exponentially-fitted methods for the numerical solution of the radial Schrödinger equation. J. comput. Appl. math. 87, 215-226 (1997) · Zbl 0890.65083
[34] Thomas, R. M.; Simos, T. E.; Mitsou, G. V.: A family of numerov-type exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. comput. Appl. math. 67, 255-270 (1996) · Zbl 0855.65086
[35] Chawla, M. M.; Rao, P. S.: A numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II. explicit method. J. comput. Appl. math. 15, 329-337 (1986) · Zbl 0598.65054
[36] Dormand, J. R.; Prince, P. J.: Runge--Kutta--Nyström triples. Comput. math. Appl. 13, 937-949 (1987) · Zbl 0633.65061
[37] Dormand, J. R.; El-Mikkawy, M. E.; Prince, P. J.: Families of Runge--Kutta--Nyström formulae. IMA J. Numer. anal. 7, 423-430 (1987) · Zbl 0627.65085
[38] Tsitouras, Ch.: Dissipative high phase-lag order methods. Appl. math. Comput. 117, 35-43 (2001) · Zbl 1023.65070
[39] Hairer, E.; Norset, S. P.; Wanner, G.: Solving ordinary differential equations. I. nonstiff problems. (1993) · Zbl 0789.65048
[40] Raptis, A. D.; Cash, J. R.: A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. phys. Commun. 36, 113-119 (1985) · Zbl 0578.65086
[41] Allison, A. C.: The numerical solution of coupled differential equations arising from the Schrödinger equation. J. comput. Phys. 6, 378-391 (1970) · Zbl 0209.47004
[42] Berstein, R. B.; Dalgarno, A.; Massey, H.; Percival, I. C.: Thermal scattering of atoms by homonuclear diatomic molecules. Proc. royal soc. London ser. A 274, 427-442 (1963)
[43] Berstein, R. B.: Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. chem. Phys. 33, 795-804 (1960)
[44] Avdelas, G.; Simos, T. E.: Embedded methods for the for the numerical solution of the Schrödinger equation. Comput. math. Appl. 31, 85-102 (1996) · Zbl 0853.65079
[45] Avdelas, G.; Simos, T. E.: Embedded eighth order methods for the for the numerical solution of the Schrödinger equation. J. math. Chem. 26, 327-341 (1999) · Zbl 0954.65061
[46] Avdelas, G.; Konguetsof, A.; Simos, T. E.: A generator of dissipative methods for the numerical solution of the Schrödinger equation. Comput. phys. Commun. (2002) · Zbl 1196.65119