×

zbMATH — the first resource for mathematics

Triaxial behaviour of transversely isotropic materials: application to sedimentary rocks. (English) Zbl 1196.74138
Summary: Failure and long-term behaviour of oriented solids are studied. Transversely isotropic materials are considered and a mathematical formulation that respect the material symmetry is developed and applied to model the triaxial behaviour of sedimentary rocks. Two failure criteria and a viscoplastic constitutive model that describe, respectively, triaxial failure and triaxial creep tests are presented and discussed. The application of the developed models to describe the mechanical behaviour of Tournemire shale shows that theoretical predictions are in good agreement with the experimental data. In the present paper, the developed approach is applied to sedimentary rock materials, nevertheless, it can be generalized to any material that exhibits transverse isotropy.
MSC:
74L10 Soil and rock mechanics
74E10 Anisotropy in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boehler, Journal de Mécanique 3 pp 5– (1970)
[2] Boehler, Acta Mechanica 27 pp 185– (1977)
[3] Cazacu, Mechanics of Cohesive-Frictional materials 3 pp 89– (1998)
[4] Nova, International Journal of Rock Mechanics and Mining Sciences 7 pp 325– (1980) · doi:10.1016/0148-9062(80)90515-X
[5] Taliercio, International Journal of Rock Mechanics and Mining Sciences 25 pp 299– (1988) · doi:10.1016/0148-9062(88)90006-X
[6] Matsuoka, Proceedings of the JSCE 232 pp 59– (1974)
[7] . A new failure condition for soils in the three dimensional stresses. In Deformation and Failure of Granular Materials, Delft, (eds). Balkema: Rotterdam, 1982.
[8] Yielding and failure of transversely isotropic solids. In Application of Tensor Functions in Solid Mechanics, (ed.), International Centre For Mechanical Sciences Courses and Lectures, vol. 292. Springer: Berlin, 1987; 67–97. · doi:10.1007/978-3-7091-2810-7_5
[9] In Theory of Invariants in Continuum Physics, (ed.). Academic Press: New York, 1971; 239–353.
[10] Zheng, Applied Mechanics Review 47 pp 545– (1994)
[11] Lui, International Journal of Engineering Science 20 pp 1099– (1982)
[12] . The Non-linear Field Theories of Mechanics (3rd edn). Springer: Berlin, 2004. · doi:10.1007/978-3-662-10388-3
[13] The Mathematical Theory of Plasticity. Clarendon Press: Oxford, 1950. · Zbl 0041.10802
[14] Car, International Journal of Plasticity 17 pp 1437– (2001)
[15] , . Le sel gemme en tant que liquide visqueux. Proceedings of the 5th ISRM Symposium on Rock Mechanics, Melbourne, Australia, 1983; D241–D246.
[16] , . Etudes expérimentale et théorique du comportement des argilites en vue de la compréhension des zones endommagées autour des ouvrages souterrains du site de Tournemire. R051216AROU, Centre de Géothechnique d’Exploitation du Sous-sol, Ecole des Mines de Paris, France, 2005.
[17] . Some useful forms of isotropic yield surfaces for soil and rock mechanics. In Finite Elements in Geomechanics, (ed.). Wiley: New York, 1977; 179–190.
[18] . Argilite de Tournemire. R99/4/ROC/MR, Centre de Géothechnique d’Exploitation du Sous-sol, Ecole des Mines de Paris, France, 1999.
[19] , , , , , , , . Projet Tournemire. DPRE/SERGD 01-19, Département de Protection de l’Environnement, Institut de Protection et de Sûreté Nucléaire, France, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.