Karimi, Bahram; Menhaj, Mohammad Bagher Non-affine nonlinear adaptive control of decentralized large-scale systems using neural networks. (English) Zbl 1196.93037 Inf. Sci. 180, No. 17, 3335-3347 (2010). Summary: This paper introduces a new decentralized adaptive neural network controller for a class of large-scale nonlinear systems with unknown non-affine subsystems and unknown interconnections represented by nonlinear functions. A radial basis function neural network is used to represent the controller’s structure. The stability of the closed loop system is guaranteed through Lyapunov’s stability analysis. The effectiveness of the proposed decentralized adaptive controller is illustrated by considering two nonlinear systems: a two-inverted pendulum and a turbo generator. The simulation results verify the merits of the proposed controller. Cited in 21 Documents MSC: 93C40 Adaptive control/observation systems 93C10 Nonlinear systems in control theory 93A14 Decentralized systems 92B20 Neural networks for/in biological studies, artificial life and related topics 93A15 Large-scale systems Keywords:decentralized non-affine nonlinear systems; adaptive control; radial basis neural networks (RBNN) PDF BibTeX XML Cite \textit{B. Karimi} and \textit{M. B. Menhaj}, Inf. Sci. 180, No. 17, 3335--3347 (2010; Zbl 1196.93037) Full Text: DOI References: [1] Bartle, R. G., The Elements of Real Analysis (1964), Wiley & Sons · Zbl 0116.32302 [2] Chang, W. D., Robust adaptive single neural control for a class of uncertain nonlinear systems with input nonlinearity, Inform. Sci., 171, 261-271 (2005) · Zbl 1068.93029 [3] Chen, C. S., Dynamic structure adaptive neural fuzzy control for MIMO uncertain nonlinear systems, Inform. Sci., 179, 2676-2688 (2009) · Zbl 1165.93322 [4] Fu, L. C., Robust adaptive decentralized control of robot manipulators, IEEE Trans. Automat. Contr., 37, 106-110 (1992) [5] Funahashi, K. I., On the approximate realization of continuous by neural networks, Neural Networks, 2, 183-192 (1989) [6] Guo, Y.; Jiang, Z. P.; Hill, D. J., Decentralized robust disturbance attenuation for a class of large-scale nonlinear systems, Syst. Control Lett., 37, 71-85 (1999) · Zbl 0917.93018 [7] Huang, S. N.; Tan, K. K.; Lee, T. H., A decentralized neural network control for a class of interconnected systems, IEEE Trans. Neural Network, 13, 6, 1554-1557 (2002) [8] Huang, S. N.; Tan, K. K.; Lee, T. H., Decentralized control design for large-scale systems with strong interconnections using neural networks, IEEE Trans. Automat. Contr., 48, 5, 805-810 (2003) · Zbl 1364.93021 [9] Huang, S. N.; Tan, K. K.; Lee, T. H., Decentralized control of a class of large-scale nonlinear systems using neural networks, Automatica, 41, 1645-1649 (2005) · Zbl 1086.93026 [10] Huang, S. N.; Tan, K. K.; Lee, T. H., Nonlinear adaptive control of interconnected systems using neural networks, IEEE Trans. Neural Network, 17, 1, 243-246 (2006) [11] Ioannou, P. A., Decentralized adaptive control of interconnected systems, IEEE Trans. Automat. Contr., AC-31, 291-298 (1986) · Zbl 0595.93036 [12] Isidori, A., Nonlinear Control Systems (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0569.93034 [13] Jain, S.; Khorrami, F., Decentralized adaptive control of a class of large-scale interconnected nonlinear systems, IEEE Trans. Automat. Contr., 42, 2 (1997) · Zbl 0884.93003 [14] Jiang, L.; Wu, Q. H.; Wen, J. Y., Decentralized nonlinear adaptive control for multi-machine power systems via high-gain perturbation observer, IEEE Trans. Circuit Syst. - I, 51, 10, 2052-2059 (2004) [15] Karimi, B.; Menhaj, M. B.; Saboori, I., Decentralized adaptive control of large-scale non-affine nonlinear systems using radial basis function neural networks, IEICE Trans. Fundamentals, E-90-A, 10, 2239-2247 (2007) [16] Karimi, B.; Menhaj, M. B.; Saboori, I., Multilayer feed forward neural networks for controlling decentralized large-scale non-affine nonlinear systems with guaranteed stability, Int. J. Innov. Comput. Inform. Contr., 6, 4, 1-10 (2010) [17] Karimi, B.; Menhaj, M. B.; Karimi-Ghartemani, M.; Saboori, I., Decentralized adaptive control of large-scale affine and non-affine nonlinear systems, IEEE Trans. Instrum. Meas., 58, 8, 2459-2467 (2009) [18] Khalil, H., Nonlinear Systems (2002), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ [20] Kumar, M. V.; Omkar, S. N.; Ganguli, R.; Sampath, P.; Suresh, S., Identification of helicopter dynamics using recurrent neural networks and flight data, J. Am. Helicopter Soc., 51, 2, 164-174 (2006) [21] Kumar, R.; Ganguli, R.; Omkar, S. N.; Vijaya Kumar, M., Rotorcraft parameter identification from real time flight data, J. Aircraft, 45, 1, 333-341 (2008) [22] Lang, S., Real Analysis (1983), Addison Wesley: Addison Wesley Reading, MA [23] Lin, C. K., Robust adaptive critic control of nonlinear systems using fuzzy basis function networks: an LMI approach, Inform. Sci., 177, 4934-4946 (2007) · Zbl 1120.93034 [24] Liu, Y. J.; Wang, W., Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems, Inform. Sci., 177, 3901-3917 (2007) · Zbl 1121.93037 [25] Lu, Z.; Shieh, L.-S.; Chen, G.; Coleman, N. P., Adaptive feedback linearization control of chaotic systems via recurrent high-order neural networks, Inform. Sci., 176, 2337-2354 (2006) · Zbl 1116.93035 [26] Melin, P.; Castillo, O., Intelligent control of aircraft dynamic systems with a new hybrid neuro-fuzzy-fractal approach, Inform. Sci., 142, 161-175 (2002) · Zbl 1010.93061 [28] Park, C. W.; Park, M., Adaptive parameter estimator based on T-S fuzzy models and its applications to indirect adaptive fuzzy control design, Inform. Sci., 159, 125-139 (2004) · Zbl 1069.93018 [29] Pawar, P. M.; Venkatesulu Reddy, K.; Ganguli, R., Damage detection in beams using spatial fourier analysis and neural networks, J. Intell. Mater. Syst. Struct., 18, 4, 347-359 (2007) [31] Sheikholeslam, S.; Desoer, C. A., Indirect adaptive control of a class of interconnected nonlinear dynamical systems, Int. J. Control, 57, 3, 743-765 (1993) · Zbl 0774.93046 [32] Shi, L.; Singh, S. K., Decentralized adaptive controller design for large-scale systems with higher order interconnections, IEEE Trans. Automat. Contr., 37, 1106-1118 (1992) · Zbl 0764.93051 [33] Spooner, J. T.; M Passino, K., Decentralized adaptive control of nonlinear systems using radial basis neural networks, IEEE Trans. Automat. Contr., 44, 11, 2050-2057 (1999) · Zbl 1136.93363 [34] Suresh, S.; Omkar, S. N.; Ganguli, R.; Mani, V., Identification of crack location and depth in a cantilever beam using a modular neural network approach, Smart Mater. Struct., 13, 4, 907-915 (2004) [35] Tang, Y.; Tomizuka, M.; Guerrero, G.; Montemayor, G., Decentralized robust control of mechanical systems, IEEE Trans. Automat. Contr., 45, 771-776 (2000) · Zbl 1009.93058 [36] Tong, S.; Li, Y.; Shi, P., Fuzzy adaptive backstepping robust control for SISO nonlinear system with dynamic uncertainties, Inform. Sci., 179, 1319-1332 (2009) · Zbl 1156.93357 [37] Wang, M.; Chen, B.; Liu, K.; Liu, X.; Zhang, S., Adaptive fuzzy tracking control of nonlinear time-delay systems with unknown virtual control coefficients, Inform. Sci., 178, 4326-4340 (2008) · Zbl 1148.93324 [38] Wen, C., Decentralized adaptive regulation, IEEE Trans. Automat. Contr., 39, 2163-2166 (1994) · Zbl 0925.93460 [39] Yoo, S. J.; Park, J. B.; Choi, Y. H., Indirect adaptive control of nonlinear dynamic systems using self recurrent wavelet neural networks via adaptive learning rates, Inform. Sci., 177, 3074-3098 (2007) · Zbl 1120.93329 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.