×

High frequency and high precision CMOS half-wave rectifier. (English) Zbl 1196.94096

Summary: A new high frequency and high precision half-wave rectifier circuit which is very suitable for CMOS technology implementation is presented. The system comprises a voltage to current converter, a dual output precision current-mode half-wave rectifier, and two current to voltage converters. An input voltage signal is converted into a current signal by using a current conveyor and a MOS resistor. The current signal is rectified using a dual output class-AB precision rectifier cell and then converted into two output voltages by using grounded MOS resistors. This class-AB current-mode precision rectifier is employed for providing high frequency performance. Simulated rectifier results based-on a 0.5 \(\mu\)m CMOS technology with \(\pm 1.2\) V supply voltage demonstrates very high operating frequency, very precise rectification and good temperature stability.

MSC:

94C05 Analytic circuit theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. Bruun, CMOS high speed, high precision current conveyor and current feedback amplifier structures. Int. J. Electron. 74, 93–100 (1993) · doi:10.1080/00207219308925816
[2] H. Chaoui, CMOS high-frequency rectifier with unity voltage gain. Electron. Lett. 31, 717–718 (1995) · doi:10.1049/el:19950509
[3] S.J.G. Gift, A high-performance full-wave rectifier circuit. Int. J. Electron. 89, 467–476 (2000)
[4] S.J.G. Gift, New precision rectifier circuits with high accuracy and wide bandwidth. Int. J. Electron. 92, 601–617 (2005) · doi:10.1080/00207210500177395
[5] R.G. Irvine, Operational Amplifier Characteristics and Applications (Prentice Hall International, New Jersey, 1994)
[6] A.A. Khan, M. Abou El-Ela, M.A. Al-Turaigi, Current-mode precision rectification. Int. J. Electron. 79, 853–859 (1995) · doi:10.1080/00207219508926319
[7] M. Kumngern, K. Dejhan, High frequency and high precision CMOS full-wave rectifier. Int. J. Electron. 93, 185–199 (2006) · Zbl 1196.94096 · doi:10.1080/00207210600562256
[8] M. Kumngern, K. Dejhan, Current conveyor-based versatile precision rectifier. WSEAS Trans. Circuits Syst. 7, 1070–1079 (2008)
[9] A. Monpapassorn, K. Dejhan, F. Cheevasuvit, A full-wave rectifier using a current conveyor and current mirrors. Int. J. Electron. 88, 751–758 (2001) · doi:10.1080/00207210110052892
[10] A. Monpapassorn, K. Dejhan, F. Cheevasuvit, CMOS dual output current mode half-wave rectifier. Int. J. Electron. 88, 1073–1084 (2001) · doi:10.1080/00207210110071242
[11] A.J. Peyton, V. Walsh, Analog Electronics with OP Amps: a Source Book of Practical Circuits (Cambridge University Press, New York, 1993)
[12] J. Ramirez-Angulo, High frequency low voltage CMOS diode. Electron. Lett. 28, 298–299 (1992) · doi:10.1049/el:19920184
[13] W. Surakumpontorn, V. Riewruja, Integrable CMOS sinusoidal frequency doubler and full-wave rectifier. Int. J. Electron. 73, 627–632 (1992) · doi:10.1080/00207219208925697
[14] C. Toumazou, F.J. Lidgey, S. Chattong, High frequency current conveyor precision full-wave rectifier. Electron. Lett. 30, 745–746 (1994) · doi:10.1049/el:19940539
[15] Z. Wang, 2-MOSFET transistor with extremely low distortion for output reaching supply voltage. Electron. Lett. 26, 951–952 (1990) · doi:10.1049/el:19900620
[16] Z. Wang, Full-wave precision rectification that is performed in current domain and very suitable for CMOS implementation. IEEE Trans. Circuits Syst. Part I 39, 456–462 (1992) · doi:10.1109/81.153637
[17] B. Wilson, V. Mannama, Current-mode rectifier with improved precision. Electron. Lett. 31, 247–248 (1995) · doi:10.1049/el:19950185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.