zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. (English) Zbl 1197.34015
The authors study the homotopy perturbation method (HPM) and variational iterative method (VIM) for nonlinear oscillator differential equations of the form $u^{\prime\prime} + f (t, u, u^\prime ) = 0$. Some examples dealing with nonlinear initial value problems are solved by applying HPM and VIM. Comparing with the exact solutions, it is shown that the numerical solutions obtained by these methods are highly accurate.

34A45Theoretical approximation of solutions of ODE
34C15Nonlinear oscillations, coupled oscillators (ODE)
Full Text: DOI
[1] Guckenheimer, J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Field. Springer, New York (1983) · Zbl 0515.34001
[2] Elabbay, E.M., El-Dessoky, M.M.: Synchronization of van der Pol oscillator and Chen Chaotic dynamical system. Chaos Solitions Fractals 36, 1425--1435 (2008) · Zbl 1148.37023 · doi:10.1016/j.chaos.2006.08.039
[3] He, J.-H.: A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2, 230--235 (1997) · doi:10.1016/S1007-5704(97)90007-1
[4] He, J.-H.: Variational iteration method--a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34, 699--708 (1999) · Zbl 05137891 · doi:10.1016/S0020-7462(98)00048-1
[5] He, J.-H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. 20, 1141--1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[6] Ganji, D.D., Jannatabadi, M., Mohseni, E.: Application of He’s variational iteration method to nonlinear Jaulent--Miodek equations and comparing it with ADM. J. Comput. Appl. Math. 207, 35--45 (2007) · Zbl 1120.65107 · doi:10.1016/j.cam.2006.07.029
[7] Ganji, D.D., Sadighi, A.: Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations. J. Comput. Appl. Math. 207, 24--34 (2007) · Zbl 1120.65108 · doi:10.1016/j.cam.2006.07.030
[8] Momani, S., Odibat, Z.: Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 54, 910--919 (2007) · Zbl 1141.65398 · doi:10.1016/j.camwa.2006.12.037
[9] Adomian, G.: Stochastic Systems. Academic Press, San Diego (1983) · Zbl 0523.60056
[10] Adomian, G.: Nonlinear Stochastic Operator Equations. Academic Press, San Diego (1986) · Zbl 0609.60072
[11] Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic, Boston (1994) · Zbl 0802.65122
[12] He, J.-H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135, 73--79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[13] He, J.-H.: Addendum: New interpretation of homotopy perturbation method. Int. J. Mod. Phys. 20, 2561--2568 (2006) · doi:10.1142/S0217979206034819
[14] He, J.-H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257--262 (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[15] Rafei, M., Ganji, D.D.: Explicit solutions of Helmholtz Equation and Fifth-order Kdv Equation using homotopy-perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 7, 321--328 (2006) · Zbl 1160.35517
[16] Ganji, D.D., Sadighi, A.: Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Nonlinear Sci. Numer. Simul. 7, 411--418 (2006)
[17] Barari, A., Omidvar, M., Gholitabar, S., Ganji, D.D.: Variational iteration method and homotopy-perturbation method for solving second-order non-linear wave equation. AIP Conf. Proc. 936, 81--85 (2007) · Zbl 1152.65306 · doi:10.1063/1.2790272
[18] Rafei, M., Ganji, D.D., Daniali, H., Pashaei, H.: The variational iteration method for nonlinear oscillators with discontinuities. J. Sound Vib. 305, 614--620 (2007) · Zbl 1242.65154 · doi:10.1016/j.jsv.2007.04.020
[19] He, J.H., Wu, X.H.: Variational iteration method: new development and applications. Comput. Math. Appl. 54, 881--894 (2007) · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083
[20] Behiry, S.H., Hashish, H., El-Kalla, I.L., Elsaid, A.: A new algorithm for the decomposition solution of nonlinear differential equations. Comput. Math. Appl. 54, 459--466 (2007) · Zbl 1126.65059 · doi:10.1016/j.camwa.2006.12.027
[21] Gottlieb, H.P.W.: Velocity-dependent conservative nonlinear oscillators with exact harmonic solutions. J. Sound Vib. 230, 323--333 (2000) · Zbl 1235.70064 · doi:10.1006/jsvi.1999.2621