zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiple periodic solutions of a ratio-dependent predator-prey model. (English) Zbl 1197.34065
Summary: A delayed ratio-dependent predator-prey model with non-monotone functional response is investigated in this paper. Some new and interesting sufficient conditions are obtained for the global existence of multiple positive periodic solutions of the ratio-dependent model. Our method is based on Mawhin’s coincidence degree and some estimation techniques for the a priori bounds of unknown solutions to the equation $Lx = \lambda $Nx. An example is represented to illustrate the feasibility of our main result. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
34C25Periodic solutions of ODE
92D25Population dynamics (general)
WorldCat.org
Full Text: DOI
References:
[1] Kuang, Y.: Delay differential equations with applications dynamics, Series of mathematics in science and engineering 191 (1993) · Zbl 0777.34002
[2] Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1993) · Zbl 0752.34039
[3] Beretta, E.; Kuang, Y.: Convergence results in a well-known delayed predator -- prey system, J math anal appl 204, 840-853 (1996) · Zbl 0876.92021 · doi:10.1006/jmaa.1996.0471
[4] Kuang, Y.: Rich dynamics of gause-type ratio-dependent predator -- prey systems, Fields inst commun 21, 325-337 (1999) · Zbl 0920.92032
[5] Akcakaya, H. R.: Population cycles of mannals: evidence for a ratio-dependent predation pyhothesis, Ecol monogr 62, 119-142 (1992)
[6] Arditi, R.; Ginzburg, L. R.: Coupling in predator -- prey dynamics: ratio-dependence, J theoret biol 139, 311-326 (1989)
[7] Arditi, R.; Ginzburg, L. R.; Akcakaya, H. R.: Variation i plankton densities among lakes: a case for ratio-dependent models, Am naturalist 138, 1287-1296 (1991)
[8] Arditi, R.; Perrin, N.; Saiah, H.: Functional response and heterogeneities: an experimental test with cladocerans, Oikos 60, 69-75 (1991)
[9] Arditi, R.; Saiah, H.: Empirical evidences of the role of heterogeneity in ratio-dependent consumption, Ecology 73, 1544-1551 (1992)
[10] Gutierrez, A. P.: The physiological basis of ratio-dependent predator -- prey theory: a metabolic pool model of Nicholson’s blowflies as an example, Ecology 73, 817-827 (1992)
[11] Berryman, A. A.: The origins and evolution of predator -- prey theory, Ecology 75, 1530-1535 (1992)
[12] Lundberg, P.; Fryxell, J. M.: Expected population density versus productivity in ratio-dependent and prey-dependent models, Am naturalist 145, 153-161 (1995)
[13] Beretta, E.; Kuang, Y.: Global analysis in some delayed ratio-dependent predator -- prey systems, Nonlinear anal TMA 32, 381-408 (1998) · Zbl 0946.34061 · doi:10.1016/S0362-546X(97)00491-4
[14] Kuang, Y.; Beretta, E.: Global qualitative analysis of a ratio-dependent predator -- prey systems, J math biol 36, 389-406 (1998) · Zbl 0895.92032 · doi:10.1007/s002850050105
[15] Hsu, S. B.; Hwang, T. W.; Kuang, Y.: Global analysis of michaelis -- menten type ratio-dependent predator -- prey system, J math biol 42, 489-506 (2003) · Zbl 0984.92035 · doi:10.1007/s002850100079
[16] Jost, C.; Arino, O.; Arditi, R.: About deterministic extinction in ratio-dependent predator -- prey models, Bull math biol 61, 19-32 (1999) · Zbl 1323.92173
[17] Fan, M.; Wang, Q.; Zou, X. F.: Dynamics of a nonautonomous ratio-dependent predator -- prey system, Proc R soc edin A 133, 97-118 (2003) · Zbl 1032.34044 · doi:10.1017/S0308210500002304
[18] Bush, A. W.; Cook, A. E.: The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater, J theoret biol 63, 385-395 (1976)
[19] Andrews, J. F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol bioeng 10, 707-732 (1986)
[20] Sokol, W.; Howell, J. A.: Kinetics of phenol oxidation by washed cells, Biotechnol bioeng 23, 2039-2049 (1980)
[21] Gains, R. E.; Mawhin, J. L.: Coincidence degree and nonlinear differential equations, (1977)
[22] Fan, Y.; Li, W. T.; Wang, L.: Periodic solutions of delayed ratio-dependent predator -- prey models with monotonic or nonmonotonic functional responses, Nonlinear anal RWA 5, 247-263 (2004) · Zbl 1069.34098 · doi:10.1016/S1468-1218(03)00036-1
[23] Wang, L. L.; Li, W. T.: Existence and global stability of positive periodic solutions of a predator -- prey system with delays, Appl math comput 146, 167-185 (2003) · Zbl 1029.92025 · doi:10.1016/S0096-3003(02)00534-9
[24] Chen, Y.: Multiple periodic solution of delayed predator -- prey systems with type IV functional responses, Nonlinear anal RWA 5, 45-53 (2004) · Zbl 1066.92050 · doi:10.1016/S1468-1218(03)00014-2
[25] Fan, M.; Kuang, Y.: Dynamics of non-autonomous predator prey system with the beddington -- deangelis functional response, J math anal appl 295, 15-39 (2004) · Zbl 1051.34033 · doi:10.1016/j.jmaa.2004.02.038
[26] Fan, M.; Wong, P. J. Y.; Agarwal, R. P.: Periodicity and stability in periodic n-species Lotka -- Volterra competition system with feedback controls and deviating arguments, Acta math sin 19, 801-822 (2003) · Zbl 1047.34080 · doi:10.1007/s10114-003-0311-1
[27] Fan, M.; Wong, P. J. Y.; Agarwal, R. P.: Periodicity in a class of nonautonomous scalar equations with deviating arguments and applications to population models, Dyn syst 19, 279-301 (2004) · Zbl 1062.34073 · doi:10.1080/14689360412331279867
[28] Ruan, S.; Xiao, D.: Global analysis in a predator -- prey system with nonmonotonic functional response, SIAM J appl math 61, 1445-1472 (2001) · Zbl 0986.34045 · doi:10.1137/S0036139999361896
[29] Xiao, D.; Ruan, S.: Multiple bifurcations in a delayed predator -- prey system with nonmonotonic functional response, J diff eq 176, 494-510 (2001) · Zbl 1003.34064 · doi:10.1006/jdeq.2000.3982
[30] Xiao, D.; Ruan, S.: Codimension two bifurcations in a delayed predator -- prey system with group defense, Int J bifurc chaos 11, No. 8, 2123-2132 (2001) · Zbl 1091.92504 · doi:10.1142/S021812740100336X
[31] Ma, W. X.; Maruno, K. I.: Complexiton solutions of the Toda lattice equation, Phys A 343, 219-237 (2004)
[32] Xia, Y. H.; Cao, J.: Almost periodic solutions for an ecological model with infinite delays, Proc Edinburgh math soc 50, No. 1, 229-249 (2007) · Zbl 1130.34044 · doi:10.1017/S0013091504001233
[33] Xia, Y. H.; Cao, J.; Zhang, H.; Chen, F. D.: Almost periodic solutions of n-species competitive system with feedback controls, J math anal appl 294, No. 2, 503-522 (2004) · Zbl 1053.34040 · doi:10.1016/j.jmaa.2004.02.025
[34] Xia, Y. H.; Cao, J.: Almost periodicity in an ecological model with M-predators and N-preys by ”pure-delay type” system, Nonlinear dyn 39, No. 3, 275-304 (2005) · Zbl 1093.92061 · doi:10.1007/s11071-005-4006-2
[35] Xia, Y. H.; Cao, J.; Lin, M.: Discrete-time analogues of predator -- prey models with monotonic or nonmonotonic functional responses, Nonlinear anal. 8, No. 4, 1079-1095 (2007) · Zbl 1127.39038 · doi:10.1016/j.nonrwa.2006.06.007
[36] Xia, Y. H.; Cao, J.: Global attractivity of a periodic ecological model with m-predators and n-preys by ”pure-delay type” system, Comput math appl 52, No. 6 -- 7, 829-852 (2006) · Zbl 1135.34038 · doi:10.1016/j.camwa.2006.06.002
[37] Xia, Y. H.; Cao, J.; Cheng, S. S.: Periodicity in a Lotka Volterra mutualism system with several delays, Appl math modelling 31, No. 9, 1960-1969 (2007) · Zbl 1167.34343 · doi:10.1016/j.apm.2006.08.013
[38] Xia, Y. H.; Cao, J.; Cheng, S. S.: Multiple periodic solutions of a delayed stage-structured predator -- prey model with nonmonotone functional responses, Appl math modelling 31, No. 9, 1947-1959 (2007) · Zbl 1167.34342 · doi:10.1016/j.apm.2006.08.012