×

Adaptive synchronization of identical chaotic and hyper-chaotic systems with uncertain parameters. (English) Zbl 1197.34091


MSC:

34D06 Synchronization of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34H05 Control problems involving ordinary differential equations
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmospheric Sci., 20, 130-141 (1963) · Zbl 1417.37129
[2] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199 (1990) · Zbl 0964.37501
[3] Fujisaka, H.; Yamada, T., Stability theory of synchronization motion in coupled-oscillator systems, Progr. Theoret. Phys., 69, 1, 32-47 (1983) · Zbl 1171.70306
[4] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 8, 821-824 (1990) · Zbl 0938.37019
[5] Kocarev, L.; Parlitz, U., Generalized synchronization, predictability and equivalence of unidirectionally coupled systems, Phys. Rev. Lett., 76, 11, 1816-1819 (1996)
[6] Vincent, U. E.; Njah, A. N.; Akinlade, O.; Solarin, A. R.T., Phase synchronization in unidirectionally coupled chaotic ratchets, Chaos, 14, 4, 1018-1025 (2004) · Zbl 1080.37039
[7] Liao, T. L., Adaptive synchronization of two Lorenz systems, Chaos Solitons Fractals, 9, 1555-1561 (1998) · Zbl 1047.37502
[8] X. Y., Wu; Z. H., Guan; Z. P., Wu., Adaptive synchronization between two different hyperchaotic systems, Nonlinear Anal., 68, 5, 1346-1351 (2008) · Zbl 1151.34041
[9] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 22, 4193-4196 (1997)
[10] Yan, Z. Y., Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic system—A symbolic-numeric computation approach, Chaos, 15, 023902-0239029 (2005) · Zbl 1080.93008
[11] Voss, H. U., Anticipating chaotic synchronization, Phys. Rev. E, 61, 5, 5115-5119 (2000)
[12] Bai, E. W.; Lonngran, E. E., Synchronization of two Lorenz systems using active control, Chaos Solitons Fractals, 8, 1, 51-58 (1997) · Zbl 1079.37515
[13] Vincent, U. E., Synchronization of Rikitake chaotic attractor using active control, Phys. Lett. A, 343, 133-138 (2005) · Zbl 1194.34091
[14] Park, Ju H., Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters, Chaos Solitons Fractals, 34, 1154-1159 (2007) · Zbl 1142.93428
[15] Zhang, H. G.; Wei, H.; Wang, Z. L.; Chai, T. Y., Adaptive synchronization between two different chaotic systems with uncertain parameters, Phys. Lett. A, 350, 363-366 (2006) · Zbl 1195.93121
[16] Zhang, R. X.; Tian, G.; Li, P.; Yang, S. P., Adaptive synchronization of a class of chaotic systems with uncertain parameters, Acta Phys. Sinica, 57, 4, 2073-2080 (2008) · Zbl 1174.93585
[17] Huang, J., Chaos synchronization between two novel different hyperchaotic systems with unknown parameters, Nonlinear Anal., 69, 11, 4174-4181 (2008) · Zbl 1161.34338
[18] Yassen, M. T., Adaptive chaos control and synchronization for uncertain new chaotic dynamical system, Phys. Lett. A, 350, 36-43 (2006) · Zbl 1195.34092
[19] Park, Ju H., Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos Solitons Fractals, 26, 959-964 (2005) · Zbl 1093.93537
[20] Park, Ju H., Adaptive synchronization of Rossler system with uncertain parameters, Chaos Solitons Fractals, 25, 333-338 (2005) · Zbl 1125.93470
[21] Li, X. F.; Chu, Y. D.; Zhang, J. G.; Chang, Y. X., Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor, Chaos Solitons Fractals (2008)
[22] Li, X. F.; Chlouverakis, K. E.; Xu, D. L., Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lü, Nonlinear Anal. RWA, 10, 4, 2357-2368 (2009) · Zbl 1163.34306
[23] Udwadia, F. E.; von Bremen, H., An efficient and stable approach for computation of Lyapunov characteristic exponents of continuous dynamical systems, Appl. Math. Comput., 121, 219-259 (2001) · Zbl 1024.65124
[24] Von Bremmen, H.; Udwadia, F. E.; Proskurowsi, W., An efficient method for the computation of Lyapunov numbers in dynamical systems, Physica D, 110, 1-16 (1997) · Zbl 0885.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.