zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization of identical chaotic and hyper-chaotic systems with uncertain parameters. (English) Zbl 1197.34091

MSC:
34D06Synchronization
34C28Complex behavior, chaotic systems (ODE)
34H05ODE in connection with control problems
93C40Adaptive control systems
WorldCat.org
Full Text: DOI
References:
[1] Lorenz, E. N.: Deterministic nonperiodic flow. J. atmospheric sci. 20, 130-141 (1963)
[2] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[3] Fujisaka, H.; Yamada, T.: Stability theory of synchronization motion in coupled-oscillator systems. Progr. theoret. Phys. 69, No. 1, 32-47 (1983) · Zbl 1171.70306
[4] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys. rev. Lett. 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[5] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability and equivalence of unidirectionally coupled systems. Phys. rev. Lett. 76, No. 11, 1816-1819 (1996)
[6] Vincent, U. E.; Njah, A. N.; Akinlade, O.; Solarin, A. R. T.: Phase synchronization in unidirectionally coupled chaotic ratchets. Chaos 14, No. 4, 1018-1025 (2004) · Zbl 1080.37039
[7] Liao, T. L.: Adaptive synchronization of two Lorenz systems. Chaos solitons fractals 9, 1555-1561 (1998) · Zbl 1047.37502
[8] Y., Wu X.; H., Guan Z.; P., Wu. Z.: Adaptive synchronization between two different hyperchaotic systems. Nonlinear anal. 68, No. 5, 1346-1351 (2008) · Zbl 1151.34041
[9] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. rev. Lett. 78, No. 22, 4193-4196 (1997) · Zbl 0896.60090
[10] Yan, Z. Y.: Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic system--A symbolic--numeric computation approach. Chaos 15, 023902-0239029 (2005)
[11] Voss, H. U.: Anticipating chaotic synchronization. Phys. rev. E 61, No. 5, 5115-5119 (2000)
[12] Bai, E. W.; Lonngran, E. E.: Synchronization of two Lorenz systems using active control. Chaos solitons fractals 8, No. 1, 51-58 (1997) · Zbl 1079.37515
[13] Vincent, U. E.: Synchronization of Rikitake chaotic attractor using active control. Phys. lett. A 343, 133-138 (2005) · Zbl 1194.34091
[14] Park, Ju H.: Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters. Chaos solitons fractals 34, 1154-1159 (2007) · Zbl 1142.93428
[15] Zhang, H. G.; Wei, H.; Wang, Z. L.; Chai, T. Y.: Adaptive synchronization between two different chaotic systems with uncertain parameters. Phys. lett. A 350, 363-366 (2006) · Zbl 1195.93121
[16] Zhang, R. X.; Tian, G.; Li, P.; Yang, S. P.: Adaptive synchronization of a class of chaotic systems with uncertain parameters. Acta phys. Sinica 57, No. 4, 2073-2080 (2008) · Zbl 1174.93585
[17] Huang, J.: Chaos synchronization between two novel different hyperchaotic systems with unknown parameters. Nonlinear anal. 69, No. 11, 4174-4181 (2008) · Zbl 1161.34338
[18] Yassen, M. T.: Adaptive chaos control and synchronization for uncertain new chaotic dynamical system. Phys. lett. A 350, 36-43 (2006) · Zbl 1195.34092
[19] Park, Ju H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos solitons fractals 26, 959-964 (2005) · Zbl 1093.93537
[20] Park, Ju H.: Adaptive synchronization of Rössler system with uncertain parameters. Chaos solitons fractals 25, 333-338 (2005) · Zbl 1125.93470
[21] Li, X. F.; Chu, Y. D.; Zhang, J. G.; Chang, Y. X.: Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor. Chaos solitons fractals (2008) · Zbl 1199.37069
[22] Li, X. F.; Chlouverakis, K. E.; Xu, D. L.: Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lü. Nonlinear anal. RWA 10, No. 4, 2357-2368 (2009) · Zbl 1163.34306
[23] Udwadia, F. E.; Von Bremen, H.: An efficient and stable approach for computation of Lyapunov characteristic exponents of continuous dynamical systems. Appl. math. Comput. 121, 219-259 (2001) · Zbl 1024.65124
[24] Von Bremmen, H.; Udwadia, F. E.; Proskurowsi, W.: An efficient method for the computation of Lyapunov numbers in dynamical systems. Physica D 110, 1-16 (1997)