Jia, Qiang Adaptive control and synchronization of a new hyperchaotic system with unknown parameters. (English) Zbl 1197.34107 Phys. Lett., A 362, No. 5-6, 424-429 (2007). Summary: This letter is involved with control and synchronization of a new hyperchaotic system with unknown parameters. Based on the Lyapunov stability theorem, this uncertain hyperchaotic system is stabilized to unstable equilibrium via adaptive control. In addition, synchronizations not only between two identical hyperchaotic systems but particularly also between two different uncertain hyperchaotic systems are realized via adaptive controllers and parameter update laws. Numerical simulations are given for the purpose of illustration and verification. Cited in 21 Documents MSC: 34H05 Control problems involving ordinary differential equations PDF BibTeX XML Cite \textit{Q. Jia}, Phys. Lett., A 362, No. 5--6, 424--429 (2007; Zbl 1197.34107) Full Text: DOI References: [1] Fradkov, A. L.; Evans, R. J., Annu. Rev. Control, 29, 33 (2005) [2] Ott, E.; Grebogi, C.; Yorke, J. A., Phys. Rev. Lett., 64, 1196 (1990) [3] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990) [4] Pyragas, K., Phys. Lett. A, 170, 421 (1992) [5] Hua, C.; Guan, X., Chaos Solitons Fractals, 22, 55 (2004) [6] Yu, Y.; Zhang, S., Chaos Solitons Fractals, 15, 897 (2003) [7] Yassen, M. T., Chaos Solitons Fractals, 23, 131 (2005) · Zbl 1091.93520 [8] Wang, C.; Su, J., Chaos Solitons Fractals, 20, 967 (2004) [9] Wang, F.; Liu, C., Chin. Phys., 15, 0963 (2006) [10] Li, Y.; Tang, W. K.S.; Chen, G., Int. J. Bifur. Chaos, 15, 3367 (2005) [11] Feng, J.; Chen, S.; Wang, C., Chaos Solitons Fractals, 26, 1163 (2005) [12] Gao, T., Chaos Solitons Fractals [13] Zhang, H.; Ma, X., Chaos Solitons Fractals, 26, 353 (2005) [14] Park, J. H., Chaos Solitons Fractals, 26, 959 (2005) [15] Liu, C., Chaos Solitons Fractals, 22, 1031 (2004) [16] Hua, C.; Guan, X.; Shi, P., Chaos Solitons Fractals, 23, 757 (2005) [17] Yassen, M. T., Phys. Lett. A, 350, 36 (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.