## Interval oscillation criteria for second-order forced delay dynamic equations with mixed nonlinearities.(English)Zbl 1197.34117

Summary: Interval oscillation criteria are established for second-order forced delay dynamic equations on time scales containing mixed nonlinearities of the form
$(r(t)\Phi_\alpha(x^\Delta(t)))^\Delta+p_0(t)\Phi_\alpha(x(\tau_0(t)))+\sum^n_{i=1}p_i(t)\Phi_{\beta_i}(x(\tau_i(t)))=e(t),\quad t\in[t_0,\infty)_{\mathbb T}$
where $$\mathbb T$$ is a time scale, $$t_0\in\mathbb T$$ a fixed number; $$[t_0,\infty)_{\mathbb T}$$ is a time scale interval; $$\Phi_*(u)=|u|^{*-1}u$$; the functions $$r,p_i,e:[t_0,\infty)_{\mathbb T}\to\mathbb R$$ are right-dense continuous with $$r>0$$ nondecreasing; $$\tau_k:\mathbb T\to\mathbb T$$ are nondecreasing right-dense continuous with $$\tau_k(t)\leq t$$, $$\lim_{t\to\infty}\tau_k(t)=\infty$$; and the exponents satisfy
$\beta_1\geq\cdots\geq \beta_m>\alpha>\beta_{m+1}\geq \cdots\beta_n>0.$
All results are new even for $$\mathbb T=\mathbb R$$ and $$\mathbb T=\mathbb Z$$. Analogous results for related advance type equations are also given, as well as extended delay and advance equations. The theory can be applied to second-order dynamic equations regardless of the choice of delta or nabla derivatives. Two examples are provided to illustrate one of the theorems.

### MSC:

 34K11 Oscillation theory of functional-differential equations 34N05 Dynamic equations on time scales or measure chains
Full Text:

### References:

 [1] Hilger, S., Analysis on measure chains — A unified approach to continuous and discrete calculus, Results math., 18, 18-56, (1990) · Zbl 0722.39001 [2] Agarwal, R.P.; O’Regan, D.; Saker, S.H., Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. math. anal. appl., 300, 203-217, (2004) · Zbl 1062.34068 [3] Agarwal, R.P.; O’Regan, D.; Saker, S.H., Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales, J. appl. math. computing, 20, 1-2, 133-147, (2006) · Zbl 1089.39001 [4] Agarwal, R.P.; Zafer, A., Oscillation criteria for second order forced dynamic equations with mixed nonlinearities, Adv. differential equations, (2009), Article ID 938706, 20 pages · Zbl 1181.34099 [5] Anderson, D.R., Oscillation of second-order forced functional dynamic equations with oscillatory potentials, J. difference equ. appl., 13, 5, 407-421, (2007) · Zbl 1123.34051 [6] Anderson, D.R., Interval criteria for oscillation of nonlinear second-order dynamic equations on time scales, Nonlinear anal., 69, 4614-4623, (2008) · Zbl 1167.34008 [7] D.R. Anderson, A. Zafer, Interval criteria for second-order super-half-linear functional dynamic equations with delay and advanced arguments, J. Diff. Equations and Appl. (in press) · Zbl 1205.34126 [8] Bohner, M.; Tisdell, C., Oscillation and nonoscillation of forced second order dynamic equations, Pacific J. math., 230, 1, 59-71, (2007) · Zbl 1160.34029 [9] Bohner, M.; Peterson, A., Dynamic equations on time scales, an introduction with applications, (2001), Birkhäuser Boston · Zbl 0978.39001 [10] Došlý, O.; Marek, D., Half-linear dynamic equations with mixed derivatives, Electron J. differential equations, 2005, 1-18, (2005) · Zbl 1092.39004 [11] Erbe, L.; Peterson, A.; Saker, S.H., Kamenev-type oscillation criteria for second-order linear delay dynamic equations, Dynamic syst. & appl., 15, 65-78, (2006) · Zbl 1104.34026 [12] Erbe, L.; Peterson, A.; Saker, S.H., Hille-Kneser-type criteria for second-order linear dynamic equations, Adv. differential equations, 2006, 1-18, (2006) · Zbl 1229.34136 [13] Erbe, L.; Peterson, A.; Saker, S.H., Oscillation criteria for second-order nonlinear delay dynamic equations, J. math. anal. appl., 333, 505-522, (2007) · Zbl 1125.34046 [14] Řehák, P., Half-linear dynamic equations on time scales: IVP and oscillatory properties, Nonlinear func. anal. appl., 7, 361-403, (2002) · Zbl 1037.34002 [15] Řehák, P., Hardy inequality on time scales and its applications to half-linear dynamic equations, J. ineq. appl., 5, 495-507, (2005) · Zbl 1107.26015 [16] Saker, S.H., Oscillation criteria of second-order half-linear dynamic equations on time scales, J. comput. appl. math., 177, 375-387, (2005) · Zbl 1082.34032 [17] () [18] Agarwal, R.P.; Grace, S.R., Oscillation theory for difference and functional differential equations, (2002), Kluwer Academic Dordrecht · Zbl 1061.34047 [19] Agarwal, R.P.; Grace, S.R.; O’Regan, D., Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, (2002), Kluwer Academic Publishers Dordrecht · Zbl 1073.34002 [20] Došlý, O.; Řehák, P., Half-linear differential equations, (2005), Elsevier North-Holland · Zbl 1006.39012 [21] Sun, Y.G.; Wong, J.S.W., Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. math. anal. appl., 334, 549-560, (2007) · Zbl 1125.34024 [22] El-Sayed, M.A., An oscillation criterion for a forced second order linear differential equation, Proc. amer. math. soc., 118, 813-817, (1993) · Zbl 0777.34023 [23] Nasr, A.H., Sufficient conditions for the oscillation of forced superlinear second order differential equations with oscillatory potential, Proc. amer. math. soc., 126, 123-125, (1998) · Zbl 0891.34038 [24] Wong, J.S.W., Oscillation criteria for a forced second order linear differential equation, J. math. anal. appl., 231, 235-240, (1999) · Zbl 0922.34029 [25] Sun, Y.G.; Meng, F.W., Interval criteria for oscillation of second-order differential equations with mixed nonlinearities, Appl. math. comput., 198, 375-381, (2008) · Zbl 1141.34317 [26] Kong, Q., Interval criteria for oscillation of second order linear ordinary differential equations, J. math. anal. appl., 229, 258-270, (1999) · Zbl 0924.34026 [27] Sun, Y.G., A note on nasr’s and wong’s papers, J. math. anal. appl., 286, 363-367, (2003) · Zbl 1042.34096 [28] A. Zafer, Interval oscillation criteria for second order super-half-linear functional differential equations with delay and advanced arguments, Math. Nachr. (in press) · Zbl 1180.34070 [29] Sun, Y.G.; Ou, C.H.; Wong, J.S.W., Interval oscillation theorems for a linear second order differential equation, Comput. math. appl., 48, 1693-1699, (2004) · Zbl 1069.34049 [30] Sun, Y.G.; Agarwal, R.P., Interval oscillation criteria for higher order forced nonlinear differential equations, Nonlinear func. anal. appl., 9, 441-449, (2004) · Zbl 1075.34031 [31] Li, W.T., Interval oscillation of second-order half-linear functional differential equations, Appl. math. comput., 155, 451-468, (2004) · Zbl 1061.34048 [32] Li, W.T.; Cheng, S.S., An oscillation criteria for nonhomogeneous half-linear differential equations, Appl. math. lett., 15, 259-263, (2002) · Zbl 1023.34029 [33] Yang, Q., Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential, Appl. math. comput., 136, 49-64, (2003) · Zbl 1030.34034 [34] Yu, Y.H., Oscillations caused by several retarded and advanced arguments, Acta math. appl. sinica, 6, 67-73, (1990), (English Ser.) · Zbl 0701.34078 [35] Beckenbach, E.F.; Bellman, R., Inequalities, (1961), Springer Berlin · Zbl 0206.06802 [36] Čermák, J.; Kundrát, P.; Urbánek, Miroslav, Delay equations on time scales: essentials and asymptotics of the solutions, J. difference equ. appl., 14, 6, 567-580, (2008) · Zbl 1154.39019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.