zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential periodic attractor of impulsive BAM networks with finite distributed delays. (English) Zbl 1197.34124
Summary: We investigate a class of impulsive bidirectional associative memory (BAM) networks with both periodic coefficients and finite distributed delays. New criteria are established for the existence of an exponential periodic attractor, which generalize and improve the previously known results. Our criteria are less restrictive and can be applied to impulsive or non-impulsive BAM networks with a broad range of activation functions without differentiability and strict monotonicity. Moreover, our results are given in terms of system parameters and finite delay kernels of impulsive BAM networks by employing inequality technique, $M$-matrix and spectral theory. Finally, an example is given to show the feasibility and effectiveness of our results. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
34K13Periodic solutions of functional differential equations
34K20Stability theory of functional-differential equations
34K45Functional-differential equations with impulses
37N25Dynamical systems in biology
92B20General theory of neural networks (mathematical biology)
WorldCat.org
Full Text: DOI
References:
[1] Kosto, B.: Bi-directional associative memories, IEEE trans syst man cybernet 18, 49-60 (1988)
[2] Kosto, B.: Adaptive bi-directional associative memories, Appl optics 26, 4947-4960 (1987)
[3] Gopalsamy, K.; He, X. Z.: Delay-independent stability in bi-directional associative memory networks, IEEE trans neural networks 5, 998-1002 (1994)
[4] Cao, J. D.: Periodic oscillatory solution of bidirectional associative memory networks with delays, Phys rev E 61, 1825-1828 (2000)
[5] Liao, X. F.; Yu, J. B.: Qualitative analysis of bidirectional associative memory with time delays, Int J circuit theory appl 26, 219-229 (1998) · Zbl 0915.94012 · doi:10.1002/(SICI)1097-007X(199805/06)26:3<219::AID-CTA991>3.0.CO;2-I
[6] Cao, J. D.; Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE trans neural networks 13, 457-463 (2002)
[7] Xia, Y. H.; Cao, J. D.; Lin, M. R.: Existence and exponential stability of almost periodic solution for BAM neural networks with impulse, Dynamics of continuous discrete and impulsive systems A DCDIS proceeding 3, 248-255 (2005)
[8] Li, Y. K.: Global exponential stability of BAM neural networks with delays and impulses, Chaos solitons & fractals 24, 279-285 (2005) · Zbl 1099.68085
[9] Cao, J. D.: Global asymptotic stability of delayed bi-directional associative memory neural networks, Appl math comput 142, 333-339 (2003) · Zbl 1031.34074 · doi:10.1016/S0096-3003(02)00308-9
[10] Cao, J. D.: Exponential stability of delayed bi-directional associative memory neural networks, Appl math comput 135, 105-112 (2003) · Zbl 1030.34073 · doi:10.1016/S0096-3003(01)00315-0
[11] Xia, Y. H.; Cao, J. D.; Huang, Z. K.: Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses, Chaos solitons & fractals 34, No. 5, 1599-1607 (2007) · Zbl 1152.34343
[12] Huang, Z. K.; Xia, Y. H.: Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses, Chaos solitons & fractals 38, No. 2, 489-498 (2008) · Zbl 1154.34381 · doi:10.1016/j.chaos.2006.11.032
[13] Huang ZK, Xia YH. The existence and exponential attractivity of \kappa&nbsp;-almost periodic sequence solution of discrete time neural networks. Nonlinear Dyn, in press. doi:10.1007/s11071-006-9139-4.
[14] Huang, Z. K.; Wang, X. H.; Gao, F.: The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks, Phys lett A 350, 182-191 (2006) · Zbl 1195.34066 · doi:10.1016/j.physleta.2005.10.022
[15] Liu BW, Huang LH. Global exponential stability of BAM neural networks with recent-history distributed delays and impulses. Neurocomputing, doi:10.1016/j.neucom.2005.09.014.
[16] Chen, A. P.; Cao, J. D.; Huang, L. H.: Exponential stability of BAM neural networks with transmission delays, Neurocomputing 57, 435-454 (2004)
[17] Song, Q. K.; Wang, Z. D.: An analysis on existence and global exponential stability of periodic solutions for BAM neural networks with time-varying delays, Nonlinear anal: real world appl (2006)
[18] Li YT, Yang CB. Global exponential stability analysis on impulsive of BAM neural networks with distributed delays. J Math Anal Appl, doi:10.1016/j.jmaa.2006.01.016.
[19] Jiang MH, Shen Y, Liao XX. Global stability of periodic solution for bidirectional associative memory neural networks with varying-time delay. Appl Math Comput, doi:10.1016/j.amc.2006.04.012. · Zbl 1113.34051
[20] Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical science, (1929) · Zbl 0484.15016
[21] Horn, R. A.; Johnson, C. R.: Topics in matrix analysis, (1991) · Zbl 0729.15001
[22] Daniel W.C. Ho, Liang JL, James L. Global exponential stability of impulsive high-order BAM neural networks with time-varing delays. Neural networks, doi:10.1016/j.neunet.2006.02.006. · Zbl 1178.68417 · doi:10.1016/j.neunet.2006.02.006
[23] Chen, A. P.; Huang, L. H.; Liu, Z. G.; Cao, J. D.: Periodic bidirectional associative memory neural networks with distributed delays, J math anal appl 317, 80-102 (2006) · Zbl 1086.68111 · doi:10.1016/j.jmaa.2005.09.092
[24] Zhao, H. Y.: Exponential stability and periodic oscillatory of bi-directional associative memory neural network involving delays, Neurocomputing 69, No. 4 -- 6, 424-448 (2006)
[25] Sabri, Arik; Vedat, Tavsanoglu: Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays, Neurocomputing 68, 161-176 (2005)
[26] Liu, Z. G.; Chen, A. P.; Huang, L. H.: Existence and global exponential stability of periodic solution to self-connection BAM neural networks with delays, Phys lett A 328, No. 2 -- 3, 127-143 (2004) · Zbl 1134.34329 · doi:10.1016/j.physleta.2004.05.055
[27] Zhao, H. Y.: Global stability of bidirectional associative memory neural networks with distributed delays, Phys lett A 297, No. 3 -- 4, 182-190 (2002) · Zbl 0995.92002 · doi:10.1016/S0375-9601(02)00434-6
[28] Yang, X. F.: Global exponential periodicity of a class of bidirectional associative memory networks with finite distributed delays, Appl math comput 171, 108-121 (2005) · Zbl 1085.68141 · doi:10.1016/j.amc.2005.01.029
[29] Baldi, P.; Atiya, A. F.: How delays affect neural dynamics and learning, IEEE trans neural networks 5, 612-621 (1994)
[30] Li, Y. K.: Existence and stability of periodic solution for BAM neural networks with distributed delays, Appl math comput 159, 847-862 (2004) · Zbl 1073.34080 · doi:10.1016/j.amc.2003.11.007
[31] Rao, V. S. H.; Phaneendra, B. R. M.: Global dynamics of bi-directional associative memory neural networks involving transmission delays and dead zones, Neural networks 12, 455-465 (1999)
[32] Townley, S.: Existence and learning of oscillations in recurrent neural networks, IEEE trans neural networks 11, No. 1, 205-214 (2000)
[33] Liu, Y. Q.; Tang, W. S.: Existence and exponential stability of periodic solution for BAM neural networks with periodic coefficients and delays, Neurocomputing 69, 2152-2160 (2006)
[34] Gui ZJ, Yang XS, Ge WG. Periodic solution for nonautonomous bidirectional associative memory neural networks with impulses. Neurocomputing, doi:10.1016/j.neucom.2006.08.004.