×

Positive solutions for system of nonlinear fractional differential equations in two dimensions with delay. (English) Zbl 1197.34155

Summary: We investigate the existence and uniqueness of positive solutions for a system of nonlinear fractional differential equations in two dimensions with delay. Our analysis relies on a nonlinear alternative of Leray-Schauder type and Krasnoselskii’s fixed point theorem in a cone.

MSC:

34K37 Functional-differential equations with fractional derivatives
47N20 Applications of operator theory to differential and integral equations

Software:

CRONE

References:

[1] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Application, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[2] K. B. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiely, New York, NY, USA, 1993. · Zbl 0789.26002
[3] K. B. Oldham and I. Spanier, The Fractional Calculus, Academic Press, Londan, UK, 1997. · Zbl 0428.26004
[4] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993. · Zbl 0818.26003
[5] B. J. West, M. Bologna, and P. Grigolini, Eds., Physics of Fractal Operators, Springer, New York, NY, USA, 2003.
[6] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1993. · Zbl 0787.34002
[7] J. Ander and P. Seibert, “Ü ber die stückweise linearen differentiallgleichungen, die bei regelungsproblemen auftreten,” Archiv der Mathematik, vol. 7, no. 3, pp. 148-164, 1956. · Zbl 0071.34302 · doi:10.1007/BF01899571
[8] S. V. Drakunov and V. I. Utkin, “Sliding mode control in dynamic systems,” International Journal of Control, vol. 55, no. 4, pp. 1029-1037, 1992. · Zbl 0745.93031 · doi:10.1080/00207179208934270
[9] E. Shustin, “Dynamics of oscillations in a multi-dimensional delay differential system,” Discrete and Continuous Dynamical Systems. Series A, vol. 11, no. 2-3, pp. 557-576, 2004. · Zbl 1063.34065 · doi:10.3934/dcds.2004.11.557
[10] S. Roy, A. Saberi, and Y. Wan, “On multiple-delay output feedback stabilization of LTI plants,” International Journal of Robust and Nonlinear Control. In press. · Zbl 1200.93115
[11] A. Oustaloup, Systèms Asservis Lineaires d’Ordre Fractionnaire, Masson, Paris, France, 1983.
[12] A. Oustaloup, La Command CRONE, série Automatique, Hermès, Paris, France, 1991. · Zbl 0789.93104
[13] V. Daftardar-Gejji and A. Babakhani, “Analysis of a system of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 511-522, 2004. · Zbl 1058.34002 · doi:10.1016/j.jmaa.2004.01.013
[14] V. Daftardar-Gejji and H. Jafari, “Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives,” Journal of Mathematical Analysis and Applications, vol. 328, no. 2, pp. 1026-1033, 2007. · Zbl 1115.34006 · doi:10.1016/j.jmaa.2006.06.007
[15] M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, A Halsted Press Book, Wiley Eastern Limited, New Dehli, India, 1985. · Zbl 0596.47038
[16] M. A. Krasnoselskiĭ, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, The Netherlands, 1964.
[17] A. Babakhani and V. Daftardar-Gejji, “Existence of positive solutions of nonlinear fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 278, no. 2, pp. 434-442, 2003. · Zbl 1027.34003 · doi:10.1016/S0022-247X(02)00716-3
[18] C.-Z. Bai and J.-X. Fang, “The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations,” Applied Mathematics and Computation, vol. 150, no. 3, pp. 611-621, 2004. · Zbl 1061.34001 · doi:10.1016/S0096-3003(03)00294-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.