×

Razumikhin stability theorem for fractional systems with delay. (English) Zbl 1197.34157

Summary: We study the stability of fractional-order nonlinear time-delay systems for Riemann-Liouville and Caputo derivatives, and we extend the Razumikhin stability theorem to fractional nonlinear time-delay systems.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K20 Stability theory of functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. · Zbl 1155.35396 · doi:10.1134/S1064562406010029
[2] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[3] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Application, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993. · Zbl 0924.44003 · doi:10.1080/10652469308819017
[4] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Institute for Nonlinear Science, Springer, New York, NY, USA, 2003. · Zbl 1088.37045 · doi:10.1137/S1111111102406038
[5] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publisher, Connecticut, Mass, USA, 2006.
[6] P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative in the behavior of real materials,” Journal of Applied Mechanics, Transactions, vol. 51, no. 2, pp. 294-298, 1984. · Zbl 1203.74022 · doi:10.1115/1.3167615
[7] J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667-1694, 2003. · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5
[8] J. Chen, D. M. Xu, and B. Shafai, “On sufficient conditions for stability independent of delay,” IEEE Transactions on Automatic Control, vol. 40, no. 9, pp. 1675-1680, 1995. · Zbl 0834.93045 · doi:10.1109/9.412644
[9] T. N. Lee and S. Dianat, “Stability of time-delay systems,” IEEE Transactions on Automatic Control, vol. 26, no. 4, pp. 951-953, 1981. · Zbl 0544.93052 · doi:10.1109/TAC.1981.1102755
[10] E. Weber, Linear Transient Analysis. Volume II, John Wiley & Sons, New York, NY, USA, 1956. · Zbl 0073.21801
[11] V. G. Jenson and G. V. Jeffreys, Mathematical Methods in Chemical Engineering, Academic Press, New York, NY, USA, 2nd edition, 1977. · Zbl 0413.00002
[12] M. Nakagava and K. Sorimachi, “Basic characteristics of a fractance device,” IEICE Transactions, Fundamentals, vol. 75, no. 12, pp. 1814-1818, 1992.
[13] P. Lanusse, A. Oustaloup, and B. Mathieu, “Third generation CRONE control,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 149-155, 1993.
[14] I. Podlubny, “Fractional-order systems and PI\lambda D\mu -controllers,” IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[15] H.-F. Raynaud and A. Zergaïnoh, “State-space representation for fractional order controllers,” Automatica, vol. 36, no. 7, pp. 1017-1021, 2000. · Zbl 0964.93024 · doi:10.1016/S0005-1098(00)00011-X
[16] M. P. Lazarević, “Finite time stability analysis of PD\alpha fractional control of robotic time-delay systems,” Mechanics Research Communications, vol. 33, no. 2, pp. 269-279, 2006. · Zbl 1192.70008 · doi:10.1016/j.mechrescom.2005.08.010
[17] W. Deng, C. Li, and J. Lü, “Stability analysis of linear fractional differential system with multiple time delays,” Nonlinear Dynamics, vol. 48, no. 4, pp. 409-416, 2007. · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[18] F. Merrikh-Bayat and M. Karimi-Ghartemani, “An efficient numerical algorithm for stability testing of fractional-delay systems,” ISA Transactions, vol. 48, no. 1, pp. 32-37, 2009. · doi:10.1016/j.isatra.2008.10.003
[19] X. Zhang, “Some results of linear fractional order time-delay system,” Applied Mathematics and Computation, vol. 197, no. 1, pp. 407-411, 2008. · Zbl 1138.34328 · doi:10.1016/j.amc.2007.07.069
[20] S. Momani and S. Hadid, “Lyapunov stability solutions of fractional integrodifferential equations,” International Journal of Mathematics and Mathematical Sciences, no. 45-48, pp. 2503-2507, 2004. · Zbl 1074.45006 · doi:10.1155/S0161171204312366
[21] Y. Li, Y. Chen, and I. Podlubny, “Stability of fractional-order nonlinear dynamic systems: lyapunov direct method and generalized Mittag-Leffler stability,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1810-1821, 2010. · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[22] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1993. · Zbl 0787.34002
[23] G. Kequin, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Birkhäuser, Basel, Switzerland, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.