×

Canonical reduction of self-dual Yang-Mills equations to Fitzhugh-Nagumo equation and exact solutions. (English) Zbl 1197.35139

Summary: The (constrained) canonical reduction of four-dimensional self-dual Yang-Mills theory to two-dimensional Fitzhugh-Nagumo and the real Newell-Whitehead equations are considered. On the other hand, other methods and transformations are developed to obtain exact solutions for the original two-dimensional Fitzhugh-Nagumo and Newell-Whitehead equations. The corresponding gauge potential \(A\mu \) and the gauge field strengths \(F\mu \nu \) are also obtained. New explicit and exact traveling wave and solitary solutions (for Fitzhugh-Nagumo and Newell-Whitehead equations) are obtained by using an improved sine-cosine method and the Wu’s elimination method with the aid of Mathematica.
Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:

35K55 Nonlinear parabolic equations

Software:

ATFM
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ward, R. S., The Painlevé property for the self-dual gauge-field equations, Phys Lett A, 102, 279-282 (1984)
[2] Belavin, A. A.; Zakharov, V. E., Yang-Mills equations as inverse scattering problem, Phys Lett B, 73, 53-57 (1978)
[3] Mason, L. J.; Newman, E. T., A connection between the Einstein and Yang-Mills equations, Commun Math Phys, 121, 659-668 (1989) · Zbl 0668.53048
[4] Woodhouse, N. M.; Mason, L. J., The Geroch group and non-Hausdorff twistor spaces, Nonlinearity, 1, 73-114 (1988) · Zbl 0651.58038
[6] Mason, L. J.; Sparling, G. A., Nonlinear Schrödinger and Korteweg-de Vries are reductions of self-dual Yang-Mills, Phys Lett A, 137, 29-33 (1989)
[7] Khater, A. H.; Callebaut, D. K.; Sayed, S. M., New representation of the self-duality and exact solutions for Yang-Mills, Int J Theor Phys, 45, 1021-1028 (2006) · Zbl 1100.81033
[8] Ward, R. S., On self-dual gauge fields, Phys Lett A, 61, 81-82 (1977) · Zbl 0964.81519
[9] Ward, R. S.; Wells, R., Twistor geometry and field theory (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0729.53068
[10] Khater, A. H.; Callebaut, D. K.; Sayed, S. M., Conservation laws and exact solutions for some nonlinear partial differential equations, Int J Theor Phys, 45, 589-616 (2006) · Zbl 1106.35083
[11] Khater, A. H.; Callebaut, D. K.; Sayed, S. M., Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces, J Comput Appl Math, 189, 387-411 (2006) · Zbl 1093.35005
[12] Ablowitz, M. J.; Clarkson, P. A., Solitons nonlinear evolution equations and inverse scattering, LMS lecture note series, vol. 149 (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[13] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys Rev Lett, 17, 1095-1097 (1967) · Zbl 1061.35520
[14] Yang, C. N.; Mills, R. L., Conservation of isotopic spin and isotopic gauge invariance, Phys Rev, 96, 191-195 (1954) · Zbl 1378.81075
[15] Yang, C. N., Condition of self duality for SU(2) gauge fields on Euclidean four-dimensional space, Phys Rev Lett, 38, 1377-1379 (1977)
[16] Ablowitz, M. J.; Chakravarty, S.; Halburt, R. G., Integrable systems and reductions of the self-dual Yang-Mills equations, J Math Phys, 44, 3147-3173 (2003) · Zbl 1062.70050
[17] Yan, C. T., A simple transformation for nonlinear waves, Phys Lett A, 224, 77-82 (1996)
[18] Yan, T. Z.; Zhang, H. Q., New explicit and exact travelling wave for a system variant Boussinesq equation in mathematical physics, Phys Lett A, 252, 291-296 (1999) · Zbl 0938.35130
[19] Wu, W. T., Polynomial equations-solving and its applications, Algorithms and computation, (Beijing 1994), 1-9. Algorithms and computation, (Beijing 1994), 1-9, Lecture notes in Comput Sci, vol. 834 (1994), Springer: Springer Berlin · Zbl 0953.01500
[20] Xia, T. C.; Zhang, H. Q.; Yan, Z. Y., New explicit exact travelling wave solution for a compound KdV-Burgers equation, Chinese Phys, 8, 694-699 (2001)
[21] Zhang, X. D.; Xia, T. C.; Zhang, H. Q., New explicit exact travelling wave solution for compound KdV-Burgers equation in mathematical physics, Appl Math E-Notes, 2, 45-50 (2002)
[22] Wang, M. L.; Li, Z. B., Application of homogeneous balances method to exact solution of nonlinear equation in mathematical physics, Phys Lett A, 216, 67-75 (1996)
[23] Parkes, E. J.; Duffy, B. R., An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput Phys Commun, 98, 288-300 (1996) · Zbl 0948.76595
[24] Lei, Y.; Fajiang, Z.; Yinghai, W., The homogeneous balance method, Lax pair, Hirota transformation and a general fifth-order KdV equation, Choas, Solitons & Fractals, 13, 337-340 (2002) · Zbl 1028.35132
[25] Khater, A. H.; Callebaut, D. K.; Sayed, S. M., Conservation laws for some nonlinear evolution equations which describe pseudospherical surfaces, J Geom Phys, 51, 332-352 (2004) · Zbl 1069.37058
[26] Khater, A. H.; Callebaut, D. K.; Abdalla, A. A.; Sayed, S. M., Exact solutions for self-dual Yang-Mills equations, Chaos Solitons & Fractals, 10, 1309-1320 (1999) · Zbl 0963.81046
[27] Khater, A. H.; Callebaut, D. K.; Abdalla, A. A.; Shehata, A. M.; Sayed, S. M., Bäcklund transformations and exact solutions for self-dual SU(3) Yang-Mills equations, Il Nuovo Cimento B, 144, 1-10 (1999)
[28] Khater, A. H.; Sayed, S. M., Exact solutions for self-dual SU(2) and SU(3)Yang-Mills fields, Int J Theor Phys, 41, 409-419 (2002) · Zbl 1106.81311
[29] Khater, A. H.; Callebaut, D. K.; Shehata, A. M.; Sayed, S. M., Self-Dual solutions for SU(2) and SU(3) gauge fields on Euclidean space, Int J Theor Phys, 43, 151-159 (2004) · Zbl 1058.81053
[30] Fizhugh, R., Impulse and physiological states in models of nerve membrane, Biophys J, 1, 445-466 (1961)
[31] Nagumo, J. S.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc IRE, 50, 2061-2071 (1962)
[32] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusion arising in population genetics, Adv Math, 30, 33-76 (1978) · Zbl 0407.92014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.