zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global exponential stability and periodicity of reaction-diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions. (English) Zbl 1197.35144
Summary: Global exponential stability and periodicity of a class of reaction-diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions are studied by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential convergence to 0 of the difference between any two solutions of the original neural networks, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Secondly, we prove periodicity. Sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the equilibrium and periodic solution are given. These conditions are easy to verify and our results play an important role in the design and application of globally exponentially stable neural circuits and periodic oscillatory neural circuits. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
35K57Reaction-diffusion equations
35B10Periodic solutions of PDE
35B35Stability of solutions of PDE
35K51Second-order parabolic systems, initial bondary value problems
92B20General theory of neural networks (mathematical biology)
WorldCat.org
Full Text: DOI
References:
[1] Wang, J.: Analysis and design of a recurrent neural network for linear programming, IEEE trans circ syst I 40, 613-618 (1993) · Zbl 0807.90083 · doi:10.1109/81.244913
[2] Marcuss, C. M.; Westervelt, R. M.: Stability of analog neural networks with delay, Phys rev A 39, No. 1, 347-359 (1989)
[3] Civalleri, P. P.; Gilli, L. M.; Pabdolfi, L.: On stability of cellular neural networks with delay, IEEE trans circ syst I 40, 157-165 (1993) · Zbl 0792.68115 · doi:10.1109/81.222796
[4] Baldi, P.; Atiga, A. F.: How delays affect neural dynamics and learning, IEEE trans neural networks 5, 612-621 (1994)
[5] Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O.: Stability and dynamics of delay-type general and cellular neural networks, IEEE trans circ syst I 39, 487-490 (1992) · Zbl 0775.92010 · doi:10.1109/81.153647
[6] Roska, T.; Wu, C. W.; Chua, L. O.: Stability of cellular neural networks with dominant nonlinear and delay-type templates, IEEE trans circ syst I 40, 270-272 (1993) · Zbl 0800.92044 · doi:10.1109/81.224300
[7] Gilli, M.: Stability of cellular neural networks and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions, IEEE trans circ syst I 41, 518-528 (1994)
[8] Gopalsamy, K.; He, X. Z.: Stability in asymmetric Hopfield nets with transmission delays, Phys D 76, 344-358 (1994) · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[9] Ye, H.; Michel, A. N.; Wang, K.: Global stability and local stability of Hopfield neural networks with delays, Phys rev E 50, 4206-4213 (1994)
[10] Forti, M.; Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE trans circ syst I 42, 354-366 (1995) · Zbl 0849.68105 · doi:10.1109/81.401145
[11] Joy, M. P.: On the global convergence of a class of functional differential equations with applications in neural network theory, J math anal applicat 232, 61-81 (1999) · Zbl 0958.34057 · doi:10.1006/jmaa.1998.6240
[12] Joy, M. P.: Results concerning the absolute stability of delayed neural networks, Neural networks 13, 613-616 (2000)
[13] Arik, S.: An analysis of global asymptotic stability of delayed cellular networks, IEEE trans neural networks 13, 1239-1242 (2002)
[14] Arik, S.: Global asymptotic stability of a large class of neural networks with constant time delay, Phys lett A 311, 504-511 (2003) · Zbl 1098.92501 · doi:10.1016/S0375-9601(03)00569-3
[15] Zhang, Y.; Tan, Kok Kiong: Global convergence of Lotka -- Volterra recurrent neural networks with delays, IEEE trans circ syst I 52, No. 11, 2482-2489 (2005)
[16] Liao, X. X.; Wang, J.; Zeng, Z.: Global asymptotic stability and global exponential stability of delayed cellular neural networks, IEEE trans circ syst II 52, No. 7, 403-409 (2005)
[17] Zeng, Z.; Wang, J.: Improved conditions for global exponential stability of recurrent neural networks with time-varying delays, IEEE trans neural networks 17, No. 3, 623-635 (2006)
[18] Chen, A. P.; Cao, J. D.; Huang, L. H.: Global robust stability of interval cellular neural networks with time-varying delays, Chaos, solitons & fractals 23, No. 3, 787-799 (2005) · Zbl 1101.68752
[19] Zhang, Q.; Wei, X. P.; Xu, J.: Global exponential convergence analysis of delayed neural networks with time-varying delays, Phys lett A 318, 537-544 (2003) · Zbl 1098.82616 · doi:10.1016/j.physleta.2003.09.062
[20] Liao, X. F.; Chen, G.; Sanchez, E. N.: LMI-based approach for asymptotical stability analysis of delayed neural networks, IEEE trans circ syst I 49, 1033-1039 (2002)
[21] Lu, H. T.; Chung, F. L.; He, Z. Y.: Some sufficient conditions for global exponential stability of delayed Hopfield neural networks, Neural networks 17, 537-544 (2004) · Zbl 1091.68094 · doi:10.1016/j.neunet.2004.01.004
[22] Chen, T. P.: Global exponential stability of delayed Hopfield neural networks, Neural networks 14, 977-980 (2001)
[23] Cao, J. D.; Ho, D. W. C.: A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach, Chaos, solitons & fractals 24, 1317-1329 (2005) · Zbl 1072.92004 · doi:10.1016/j.chaos.2004.09.063
[24] Cao, J. D.; Wang, J.: Global exponential stability and periodicity of recurrent neural networks with time delays, IEEE trans circuits syst I 52, No. 5, 925-931 (2005)
[25] Tank, D. W.; Hopfield, J. J.: Neural computation by concentrating information in time, Proc natl acad sci USA 84, No. 7, 1896-1900 (1987)
[26] Principle, J. C.; Huo, J. M.; Celebi, S.: An analysis of the gamma memory in dynamic neural networks, IEEE trans neural network 5, No. 2, 331-337 (1994)
[27] Liao, X. F.; Wong, K. W.; Yang, S. Z.: Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays, Phys lett A 316, No. 1 -- 2, 55-64 (2003) · Zbl 1038.92001 · doi:10.1016/S0375-9601(03)01113-7
[28] Zhang, Y.; Heng, P. A.; Leung, K. S.: Convergence analysis of cellular neural networks with unbounded delay, IEEE trans circ syst I 48, No. 6, 680-687 (2001) · Zbl 0994.82068 · doi:10.1109/81.928151
[29] Guo, S. J.; Huang, L. H.: Exponential stability and periodic solutions of neural networks with continuously distributed delays, Phys rev 67, 011902 (2003)
[30] Zhang, J. Y.; Suda, Y.; Iwasa, T.: Absolutely exponential stability of a class of neural networks with unbounded delay, Neural networks 17, 391-397 (2004) · Zbl 1074.68057 · doi:10.1016/j.neunet.2003.09.005
[31] Song, Q. K.; Cao, J. D.: Global exponential stability and existence of periodic solutions in BAM networks with delays and reaction diffusion terms, Chaos, solitons & fractals 23, No. 2, 421-430 (2005) · Zbl 1068.94534
[32] Zhao, H. Y.; Wang, G. L.: Existence of periodic oscillatory solution of reaction -- diffusion neural networks with delays, Phys lett A 343, No. 5, 372-383 (2005) · Zbl 1194.35221 · doi:10.1016/j.physleta.2005.05.098
[33] Song, Q. K.; Cao, J. D.; Zhao, Z. J.: Periodic solutions and its exponential stability of reaction -- diffusion recurrent neural networks with continuously distributed delays, Nonlin anal: real world applicat 7, No. 1, 65-80 (2006) · Zbl 1094.35128 · doi:10.1016/j.nonrwa.2005.01.004
[34] Zhao, Z. J.; Song, Q. K.; Zhang, J. Y.: Exponential periodicity and stability of neural networks with reaction -- diffusion terms and both variable and unbounded delays, Comput math applicat 51, No. 3 -- 4, 475-486 (2006) · Zbl 1104.35065 · doi:10.1016/j.camwa.2005.10.009
[35] Liang, J. L.; Cao, J. D.: Global exponential stability of reaction -- diffusion recurrent neural networks with time-varying delays, Phys lett A 314, 434-442 (2003) · Zbl 1052.82023 · doi:10.1016/S0375-9601(03)00945-9
[36] Song, Q. K.; Zhao, Z. J.; Li, Y. M.: Global exponential stability of BAM neural networks with distributed delays and reaction -- diffusion terms, Phys lett A 335, No. 2 -- 3, 213-225 (2005) · Zbl 1123.68347 · doi:10.1016/j.physleta.2004.12.007
[37] Cui, B. T.; Lou, X. Y.: Global asymptotic stability of BAM neural networks with distributed delays and reaction -- diffusion terms, Chaos, solitons & fractals 27, No. 5, 1347-1354 (2006) · Zbl 1084.68095
[38] Wang, L. S.; Gao, Y. Y.: Global exponential robust stability of reaction -- diffusion interval neural networks with time-varying delays, Phys lett A 350, No. 5 -- 6, 342-348 (2006) · Zbl 1195.35179 · doi:10.1016/j.physleta.2005.10.031
[39] Sun, J.; Wan, L.: Convergence dynamics of stochastic reaction -- diffusion recurrent neural networks with delays, Int J bifurcat chaos 15, No. 7, 2131-2144 (2005) · Zbl 1092.35530 · doi:10.1142/S0218127405013332
[40] Wang, L. S.; Xu, D. Y.: Asymptotic behavior of a class of reaction -- diffusion equations with delays, J math anal appl 281, 439-453 (2003) · Zbl 1031.35065 · doi:10.1016/S0022-247X(03)00112-4
[41] Schiff, S. J.; Jerger, K.; Duong, D. H.; Chang, T.; Spano, M. L.; Ditto, W. L.: Controlling chaos in the brain, Nature 370, 615-620 (1994)
[42] Liao, X. F.; Wong, K. W.; Leung, C. S.; Wu, Z. F.: Hopf bifurcation and chaos in a single delayed neuron equation with non monotonic activation function, Chaos, solitons & fractals 12, 1535-1547 (2001) · Zbl 1012.92005 · doi:10.1016/S0960-0779(00)00132-6
[43] Liao, X. X.; Li, J.: Stability in gilpin -- ayala competition models with diffusion, Nonlin anal 28, 1751-1758 (1997) · Zbl 0872.35054 · doi:10.1016/0362-546X(95)00242-N
[44] Hastings, A.: Global stability in Lotka -- Volterra systems with diffusion, J math biol 6, No. 2, 163-168 (1978) · Zbl 0393.92013 · doi:10.1007/BF02450786
[45] Rothe, F.: Convergence to the equilibrium state in the Volterra -- Lotka diffusion equations, J math biol 3, 319-324 (1976) · Zbl 0355.92013 · doi:10.1007/BF00275064
[46] Omatu, S.; Seinfeld, J. H.: Distributed parameter systems -- theory and applications, (1989) · Zbl 0675.93001
[47] Lu, J. G.: Global exponential stability and periodicity of reaction -- diffusion delayed recurrent neural networks with Dirichlet boundary conditions, Chaos, solitons & fractals 35, No. 1, 116-125 (2008) · Zbl 1134.35066
[48] Wang, J.; Lu, J. G.: Global exponential stability of fuzzy cellular neural networks with delays and reaction -- diffusion terms, Chaos, solitons & fractals 38, No. 3, 878-885 (2008) · Zbl 1146.35315