zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wave of chaos in a diffusive system: generating realistic patterns of patchiness in plankton-fish dynamics. (English) Zbl 1197.37121
Summary: We show that wave of chaos (WOC) can generate two-dimensional time-independent spatial patterns which can be a potential candidate for understanding planktonic patchiness observed in marine environments. These spatio-temporal patterns were obtained in computer simulations of a minimal model of phytoplankton-zooplankton dynamics driven by forces of diffusion. We also attempt to figure out the average lifetimes of these non-linear non-equilibrium patterns. These spatial patterns serve as a realistic model for patchiness found in aquatic systems (e.g., marine and oceanic). Additionally, spatio-temporal chaos produced by bi-directional WOCs is robust to changes in key parameters of the system; e.g., intra-specific competition among individuals of phytoplankton and the rate of fish predation. The ideas contained in the present paper may find applications in diverse fields of human endeavor. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
37N25Dynamical systems in biology
92D25Population dynamics (general)
35K57Reaction-diffusion equations
WorldCat.org
Full Text: DOI
References:
[1] Rai, V.; Schaffer, W. M.: Chaos in ecology, Chaos, solitons & fractals 12, 197-203 (2001) · Zbl 0973.00028
[2] Franks, P. J. S.: Spatial patterns in dense algal blooms, Limnol oceanol 42, 1297-1305 (1997)
[3] Legendre, L.: The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans, J plank res 12, 681-699 (1990)
[4] Hillary, R. M.; Bees, M. A.: Plankton lattices and the role of chaos in plankton patchiness, Phys rev E 69, 031913 (2004)
[5] Abraham, E. R.: The generation of plankton patchiness by turbulent stirring, Nature 391, 577-580 (1998)
[6] Turing, A. M.: On the chemical basis of morphogenesis, Philos trans R soc London ser B 237, 37-72 (1952)
[7] Segel, L. A.; Jackson, J. L.: Dissipative structures: an explanation and an ecological example, J theor biol 37, 545-559 (1972)
[8] Levin, S. A.; Segel, L. A.: Hypothesis for origin of planktonic patchiness, Nature 259, 659 (1976)
[9] Medvinsky, A. B.; Tikhonova, I. A.; Aliev, R. R.; Li, B. L.; Lin, Z. S.; Malchow, H.: Patchy environment as a factor of complex plankton dynamics, Phys rev E 64, 021915-021917 (2001)
[10] Fasham, M. J. R.: The statistical and mathematical analysis of plankton patchiness, Oceanogr mar biol ann rev 16, 43-79 (1978)
[11] Franks, P. J. S.; Wroblewski, J. S.; Fileri, G. R.: Behavior of simple plankton model with food-level acclimation by herbivores, Mar biol 91, 121-129 (1986)
[12] Steel, J. H.; Hunderson, E. W.: A simple model for plankton patchiness, J plankton res 14, 1397-1403 (1992)
[13] Truscott, J. E.; Brindley, J.: Equilibria, stability and excitability in a general class of plankton population models, Philos trans R soc London ser A 347, 703-718 (1994) · Zbl 0857.92017 · doi:10.1098/rsta.1994.0076
[14] Scheffer, M.: Fish and nutrients interplay determines algal biomass: a minimal model, Oikos 62, 271-282 (1991)
[15] Malchow, H.: Spatio-temporal pattern formation in non-linear nonequilibrium plankton dynamics, Proc R soc London ser B 251, 103-109 (1993)
[16] Malchow, H.: Nonequilibrium structures in plankton dynamics, Ecol model 75 -- 76, 123-134 (1994)
[17] Pascual, M.: Diffusion induced chaos in a spatial predator -- prey system, Proc R soc London ser B 103, 251-257 (1993)
[18] Petrovskii, S. V.; Malchow, H.: Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics, Theor populat biol 59, 157-174 (2001) · Zbl 1035.92046 · doi:10.1006/tpbi.2000.1509
[19] Medvinsky, A.; Petrovskii, S.; Tikhonova, I.; Malchow, H.; Li, Bai-Lian: Spatiotemporal complexity of plankton and fish dynamics, SIAM rev 44, 311-370 (2002) · Zbl 1001.92050 · doi:10.1137/S0036144502404442
[20] Malchow, H.; Petrovskii, S. V.; Medvinsky, A. B.: Numerical study of plankton -- fish dynamics in a spatially structured and noisy environment, Ecol model 149, 247-255 (2002)
[21] Malchow, H.: Motional instabilities in prey -- predator systems, J theor biol 204, 639-647 (2000)
[22] Malchow, H.; Hilker, F.; Petrovskii, S.: Noise and productivity dependence of spatiotemporal pattern formation in a prey -- predator system, Discr cont dyn -- B 4, 705-711 (2004) · Zbl 1114.92068 · doi:10.3934/dcdsb.2004.4.705
[23] Malchow, H.; Radtke, B.; Kallache, M.; Medvinsky, A.; Tikhonov, D.; Petrovskii, S.: Spatio-temporal pattern formation in coupled models of plankton dynamics and fish school motion, Non-linear anal -- real world appl 1, 53-67 (2000) · Zbl 0986.92041 · doi:10.1016/S0362-546X(99)00393-4
[24] Tikhonova, I.; Li, B.; Malchow, H.; Medvinsky, A.: The impact of the phytoplankton growth rule on spatial and temporal dynamics of plankton communities in a heterogeneous environment, Biofizika 48, 891-899 (2003)
[25] Sherratt, J.; Eagan, B.; Lewis, M.: Oscillations and chaos behind predator -- prey invasion: mathematical artifact or ecological reality?, Philos trans R soc London B 352, 21-38 (1997)
[26] Malchow, H.; Petrovskii, S.; Medvinsky, A. B.: Pattern formation in models of plankton dynamics: a synthesis, Oceanol acta 24, 479-487 (2001)
[27] Scheffer, M.: Population and community biology series 22, Ecology of shallow lakes (1998)
[28] Medvinsky AB. Personal communication, 2006.
[29] Cross, M. C.; Hohenberg, P. C.: Spatio-temporal chaos, Science 263, 1569-1570 (1994) · Zbl 1226.37055 · doi:10.1126/science.263.5153.1569
[30] Hu, G.; Xiao, J.; Yang, J.; Xie, F.; Qu, Z.: Synchronization of spatio-temporal chaos and its applications, Phys rev E 56, No. 3, 2738-2746 (1997)
[31] Gang, H.; Zhilin, Q.: Controlling spatiotemporal chaos in coupled map lattices, Phys rev lett 72, 68-71 (1994)
[32] Zhang, H.; Patel, N.: Spiral wave breakdown in an excitable medium model of cardiac tissue, Chaos, solitons & fractals 5, No. 3 -- 4, 635-639 (1995) · Zbl 0925.92058 · doi:10.1016/0960-0779(93)E0046-E
[33] Bramann, Y.; John, F.; Lindner, J. F.; Ditto, W. L.: Taming spatio-temporal chaos with disorder, Nature 378, 465-467 (1995)
[34] Tikhonov, D. A.; Enderlein, J.; Malchow, H.; Medvinsky, A. B.: Chaos and fractals in fish school motion, Chaos, solitons & fractals 12, 277-288 (2001) · Zbl 0972.92035