zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. (English) Zbl 1197.49008
Summary: In this paper, we introduce an iterative method based on the extragradient method for finding a common element of the set of a general system of variational inequalities and the set of fixed points of a strictly pseudocontractive mapping in a real Hilbert space. Furthermore, we prove that the studied iterative method strongly converges to a common element of the set of a general system of variational inequalities and the set of fixed points of a strictly pseudocontractive mapping under some mild conditions imposed on algorithm parameters.

49J40Variational methods including variational inequalities
47J20Inequalities involving nonlinear operators
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47N10Applications of operator theory in optimization, convex analysis, programming, economics
65J15Equations with nonlinear operators (numerical methods)
65K15Numerical methods for variational inequalities and related problems
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
Full Text: DOI
[1] Browder, F. E.; Petryshyn, W. V.: Construction of fixed points of nonlinear mappings in Hilbert space, J. math. Anal. appl. 20, 197-228 (1967) · Zbl 0153.45701 · doi:10.1016/0022-247X(67)90085-6
[2] Liu, F.; Nashed, M. Z.: Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-valued anal. 6, 313-344 (1998) · Zbl 0924.49009 · doi:10.1023/A:1008643727926
[3] Yao, J. C.: Variational inequalities with generalized monotone operators, Math. oper. Res. 19, 691-705 (1994) · Zbl 0813.49010 · doi:10.1287/moor.19.3.691
[4] Zeng, L. C.; Schaible, S.; Yao, J. C.: Iterative algorithm for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. optim. Theory appl. 124, 725-738 (2005) · Zbl 1067.49007 · doi:10.1007/s10957-004-1182-z
[5] Ceng, L. C.; Yao, J. C.: An extragradient-like approximation method for variational inequality problems and fixed point problems, Appl. math. Comput. 190, 205-215 (2007) · Zbl 1124.65056 · doi:10.1016/j.amc.2007.01.021
[6] Noor, M. Aslam: Some developments in general variational inequalities, Appl. math. Comput., 191-277 (2004) · Zbl 1134.49304 · doi:10.1016/S0096-3003(03)00558-7
[7] Censor, Y.; Iusem, A. N.; Zenios, S. A.: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. program. 81, 373-400 (1998) · Zbl 0919.90123 · doi:10.1007/BF01580089
[8] Takahashi, W.; Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings, J. optim. Theory appl. 118, 417-428 (2003) · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[9] Nadezhkina, N.; Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. optim. Theory appl. 128, 191-201 (2006) · Zbl 1130.90055 · doi:10.1007/s10957-005-7564-z
[10] Zeng, L. C.; Yao, J. C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10, 1293-1303 (2006) · Zbl 1110.49013
[11] Korpelevich, G. M.: An extragradient method for finding saddle points and for other problems, Ekonom. i mat. Metody 12, 747-756 (1976) · Zbl 0342.90044
[12] Yao, Y.; Yao, J. C.: On modified iterative method for nonexpansive mappings and monotone mappings, Appl. math. Comput. 186, 1551-1558 (2007) · Zbl 1121.65064 · doi:10.1016/j.amc.2006.08.062
[13] Verma, R. U.: On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. sci. Res. hot-line 3, 65-68 (1999) · Zbl 0970.49011
[14] Verma, R. U.: Iterative algorithms and a new system of nonlinear quasivariational inequalities, Adv. nonlinear var. Inequal. 4, 117-124 (2001) · Zbl 1014.47050
[15] Ceng, L. C.; Wang, C.; Yao, J. C.: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. methods oper. Res. 67, 375-390 (2008) · Zbl 1147.49007 · doi:10.1007/s00186-007-0207-4
[16] Acedo, G. L.; Xu, H. K.: Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear anal. 67, 2258-2271 (2007) · Zbl 1133.47050 · doi:10.1016/j.na.2006.08.036
[17] Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. math. Anal. appl. 305, 227-239 (2005) · Zbl 1068.47085 · doi:10.1016/j.jmaa.2004.11.017
[18] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings, J. math. Anal. appl. 298, 279-291 (2004) · Zbl 1061.47060 · doi:10.1016/j.jmaa.2004.04.059