zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On an optimization problem for a class of impulsive hybrid systems. (English) Zbl 1197.49038
Summary: This contribution addresses the problem of optimal control for a class of hybrid systems, where discrete transitions are accompanied by instantaneous changes in the continuous state variables, and where these changes can be considered as control variables. Based on a variational approach, necessary conditions of optimality are first established. The problem is then cast as a parametric optimization problem for which gradient information is derived. Finally, we discuss assumptions that guarantee convergence of a conceptual algorithm to a stationary solution. A brief discussion on the main implementation issues is also included.

49N25Impulsive optimal control problems
49K20Optimal control problems with PDE (optimality conditions)
Full Text: DOI
[1] Alamir M (2006) A benchmark for optimal control solvers for hybrid nonlinear systems. Automatica 42:1593--1598 · Zbl 1128.49302 · doi:10.1016/j.automatica.2006.04.005
[2] Alamir M, Attia SA (2004) An efficient algorithm to solve optimal control problems for nonlinear switched hybrid systems. In: IFAC NOLCOS. Stuttgart, 1--3 September 2004
[3] Attia SA, Alamir M, Canudas de Wit C (2005) Suboptimal control of switched nonlinear systems under location and switching constraints. In: 16th IFAC World Congress. Prague, 3--8 July 2005
[4] Axelsson H, Wardi Y, Egerstedt M (2006) Convergence of gradient-descent algorithms for mode-scheduling problems in hybrid systems. In: Proceedings of the 17th international symposium on mathematical theory of networks and systems. Kyoto, July 2006, pp 625--627
[5] Azhmyakov A, Raisch J (2006) A gradient-based approach to a class of hybrid optimal control problems. In: Proceedings of the conference on analysis and design of hybrid systems ADHS. Alghero, June 2006, pp 89--94
[6] Bertsekas DP (1995) Nonlinear programming. Athena Scientific, Clermont-Ferrand · Zbl 0935.90037
[7] Bryson AE, Ho Y-C (1975) Applied optimal control: optimization, estimation and control. Hemisphere, Washington, DC
[8] Cassandras CG, Pepyne DL, Wardi Y (1998) Generalized gradient algorithms for hybrid system models of manufacturing systems. In Proceedings of the IEEE conference on decision and control. Tampa, December 1998, pp 2627--2632
[9] Clarke F, Vinter R (1989) Optimal multiprocesses. SIAM J Control Optim 27:1072--1090 · Zbl 0684.49007 · doi:10.1137/0327057
[10] Egerstedt M, Wardi Y, Axelsson H (2006) Transition-time optimization for switched-mode dynamical systems. IEEE Trans Automat Contr 51(1):110--115 · doi:10.1109/TAC.2005.861711
[11] Elsner MP, Mendez DF, Muslera AE, Seidel-Morgenstern A (2005) Experimental study and simplified mathematical description of preferential crystallisation. Chirality (17):183--195 · doi:10.1002/chir.20135
[12] Gelfand IM, Fomin, SV (1963) Calculus of variations. Prentice-Hall, Englewood Cliffs
[13] Hedlund S, Rantzer A (2002) Convex dynamic programming for hybrid systems. IEEE Trans Automat Contr 47(9):1536--1540 · doi:10.1109/TAC.2002.802753
[14] Lu J, Liao LZ, Nerode A, Taylor JH (1993) Optimal control of systems with continuous and discrete states. In: Proceedings of the IEEE conference on decision and control. San Antonio, 15--17 December 1993, pp 2292--2297
[15] Mehta TR, Yeung D, Verriest EI, Egerstedt M (2007) Optimal control of multi-dimensional, hybrid ice-skater model. In: American control conference. New York, 11--13 July 2007, pp 2787--2792
[16] Polak E (1971) Computational methods in optimization: a unified approach. Academic, London · Zbl 0257.90055
[17] Pshenichny BN, Danilin YM (1982) Numerical methods in extremal problems. Mir, Grand Forks
[18] Raisch R, Vollmer U, Angelov I (2005) Control problems in batch crystallization of enantiomers. In: Computer Methods and Systems, CMS. Krakow, November 2005
[19] Rantzer, A (2006) On relaxed dynamic programming in switching systems. IEE Proc Control Theory Appl 153(5):567--574 · doi:10.1049/ip-cta:20050094
[20] Shaikh MS, Caines, PE (2003) On the optimal control of hybrid systems: optimization of trajectories, switching times, and location schedules. In: HSCC 2003. Prague, 3--5 April 2003 · Zbl 1038.49033
[21] Shaikh MS, Caines, PE (2007) On the hybrid optimal control problem: theory and algorithms. IEEE Trans Automat Contr 52(9):1587--1603 · doi:10.1109/TAC.2007.904451
[22] Shampine LF, Thompson S (2000) Event location for ordinary differential equations. Comp Math Appl 39(5--6):43--54 · Zbl 0956.65055 · doi:10.1016/S0898-1221(00)00045-6
[23] Simic SN, Johansson KH, Sastry S, Lygeros J (2009) Towards a geometric theory of hybrid systems. In: Lynch N, Krogh B (eds) HSCC 2000. Lecture notes in computer science. Springer, Berlin Heidelberg New York, pp 421--436
[24] Sussmann HJ (1999) A nonsmooth hybrid maximum principle. In: Aeyels D, Lamnabhi-Lagarrigue F, van der Schaft AJ (eds) Stability and stabilization of nonlinear systems. Lecture notes in control and information sciences, vol 246. Springer, Berlin Heidelberg New York, pp 325--354 · Zbl 0967.49016
[25] Verriest EI (2006) Multi-mode multi-dimensional systems. In: Seventeenth International Symposium on MTNS, MTNS2006. Kyoto, 24--28 July 2006
[26] Verriest E, Delmotte F, Egerstedt M (2004) Optimal impulsive control of point delay systems with refractory period. In: Proceedings of the 5th IFAC workshop on time delay systems. Leuven, September 2004 · Zbl 1148.49017
[27] Verriest E, Delmotte F, Egerstedt M (2005) Control of epidemics by vaccination. In: Proceedings of the American control conference. Portland, June 2005, pp 985--990
[28] Xu X, Antsaklis PJ (2003a) Results and perspectives on computational methods for optimal control of switched systems. In: Maler O, Pnueli A (eds) HSCC 2003. Lecture notes in computer science. Springer, Berlin Heidelberg New York, pp 540--555 · Zbl 1038.49034
[29] Xu A, Antsaklis P (2003b) Optimal control of hybrid autonomous systems with state jumps. In Proceedings of the American control conference. Denver, June 2003, pp 5191--5196
[30] Xu X, Antsaklis P (2003c) Quadratic optimal control problems for hybrid linear autonomous systems with state jumps. In: Proceedings of the American control conference. Denver, June 2003, pp 3393--3398