zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dual quaternions and dual projective spaces. (English) Zbl 1197.53028
Summary: Not reviewed. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

53B99Local differential geometry
15A66Clifford algebras, spinors
Full Text: DOI
[1] Ata, E.: Symplectic geometry on dual quaternions, D.Ü. fen bil. Derg 6, 221-230 (2004)
[2] Chevalley, C.: Theory of Lie groups, (1946) · Zbl 0063.00842
[3] El Naschie, M. S.: On twistors in Cantorian &z.epsiv;$(\infty )$ space, Chaos, solitons & fractals 12, 741-746 (2001) · Zbl 1022.81543
[4] Hacısaliho&gbreve, H. H.; Lu: Acceleration axes in spatial kinematics, Communications 20A, 1-15 (1971)
[5] Hacısaliho&gbreve, H. H.; Lu: Hareket geometrisi ve kuaternionlar teorisi, (1983)
[6] Penrose, R.: The central program of twistor theory, Chaos, solitons & fractals 10, No. 2/3, 581-611 (1999) · Zbl 0994.81049
[7] Yano, K.; Kon, M.: Structures on manifolds, (1984) · Zbl 0557.53001
[8] Toth, G.: Glimpses of algebra and geometry, (1998) · Zbl 0892.00002