×

Riesz transforms on forms and \(L^p\)-Hodge decomposition on complete Riemannian manifolds. (English) Zbl 1197.53052

Rev. Mat. Iberoam. 26, No. 2, 481-528 (2010); erratum ibid. 30, No. 1, 369-370 (2014).
Author’s abstract: “We prove the strong \(L^p\) stability of the heat semigroup generated by the Hodge Laplacian on complete Riemannian manifolds with non-negative Weitzenböck curvature. Based on a probabilistic representation formula, we obtain an explicit upper bound of the \(L^p\)-norm of the Riesz transforms on forms on complete Riemannian manifolds with suitable curvature conditions. Moreover, we establish the weak \(L^p\)-Hodge decomposition theorem on complete Riemannian manifolds with non-negative Weitzenböck curvature.”
Martingale representation of Riesz transforms in terms of covariant Ito calculus is done.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J65 Diffusion processes and stochastic analysis on manifolds
58J40 Pseudodifferential and Fourier integral operators on manifolds
60J65 Brownian motion
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Arcozzi, N.: Riesz transforms on compact Lie groups, spheres and Gauss space. Ark. Mat. 36 (1998), no. 2, 201-231. · Zbl 1031.42009
[2] Auscher, P., Coulhon, T., Duong, X.T. and Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 911-957. · Zbl 1086.58013
[3] Bakry, D.: Transformations de Riesz pour les semi-groupes symétriques. II. Étude sous la condition \(\Gamma_2\geq 0\). In Séminaire de Probabilités, XIX , 145-174. Lecture Notes in Math. 1123 . Springer, Berlin, 1985. · Zbl 0561.42011
[4] Bakry, D.: Un critére de non-explosion pour certaines diffusions sur une variété Riemannienne compléte. C. R. Acad. Sci. Paris Sér. I. Math. 303 (1986), no. 1, 23-26. · Zbl 0589.60069
[5] Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. In Séminaire de Probabilités, XXI , 137-172. Lecture Notes in Math. 1247 . Springer, Berlin, 1987. · Zbl 0629.58018
[6] Bakry, D.: The Riesz transforms associated with second order differential operators. In Seminar on Stochastic Processes, 1988 , 1-43. Progr. Probab. 17 . Birkhäuser Boston, Boston, Ma, 1989. · Zbl 0689.58032
[7] Berline, N., Getzler, E. and Vergne, M.: Heat kernels and Dirac operators. Grundlehren der Mathematischen Wissenschaften 298 . Springer-Verlag, Berlin, 1992. · Zbl 0744.58001
[8] Bismut, J.M.: The Atiyah-Singer theorems: a probabilistic approach. I. The index theorem. J. Funct. Anal. 57 (1984), no. 1, 56-99. · Zbl 0538.58033
[9] Bañuelos, R. and Lindeman, A.II.: A martingale study of the Beurling-Ahlfors transforms in \(\mathbbR^n\). J. Funct. Anal. 145 (1997), no. 1, 224-265. · Zbl 0876.60026
[10] Bañuelos, R. and Wang, G.: Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms. Duke Math. J. 80 (1995), no. 3, 575-600. · Zbl 0853.60040
[11] Bañuelos, R. and Méndez-Hernández, P.: Space-time Brownian motion and the Beurling-Ahlfors transform. Indiana Univ. Math J. 52 (2003), no. 4, 981-990. · Zbl 1080.60043
[12] Bueler, E.L.: The heat kernel weighted Hodge laplacian on noncompact manifolds. Trans. Amer. Math. Soc. 351 (1999), no. 2, 683-713. JSTOR: · Zbl 0920.58002
[13] Burkholder, D.L.: A sharp and strict \(L^p\)-inequality for stochastic integrals. Ann. Probab. 15 (1987), no. 1, 268-273. · Zbl 0617.60042
[14] Carron, G., Coulhon, T. and Hassell, A.: Riesz transform and \(L^p\) cohomology for manifolds with Euclidean ends. Duke Math. J. 133 (2006), no. 1, 59-93. · Zbl 1106.58021
[15] Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12 (1973), 401-414. · Zbl 0263.35066
[16] Coulhon, T. and Duong, X.T.: Riesz transforms for \(1\leq p\leq 2\). Trans. Amer. Math. Soc. 351 (1999), no. 3, 1151-1169. JSTOR: · Zbl 0973.58018
[17] Coulhon, T. and Duong, X.T.: Riesz transform and related inequalities on noncompact Riemannian manifolds. Comm. Pure Appl. Math. 56 (2003), no. 12, 1728-1751. · Zbl 1037.58017
[18] Dellacherie, C., Maisonneuve, B. and Meyer, P.A.: Probabilies et Potentiel, Chapitres XVII a XXIV, Processus de Markov (fin) Complements de Calcul Stochastiques . Hermann, 1992.
[19] De Rham, G.: Variétés Différentielles. Hermain, Paris, 1960.
[20] Donaldson, S. and Sullivan, D.: Quasiconformal 4-manifolds. Acta Math. 163 (1989), no. 3-4, 181-252. · Zbl 0704.57008
[21] Elworthy, D., LeJan, Y. and Li, X.M.: On the geometry of diffusion operators and stochastic flows. Lecture Notes in Mathematics 1720 . Springer-Verlag, Berlin, 1999. · Zbl 0942.58004
[22] Engel, K.J. and Nagel, R.: One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics 194 . Springer-Verlag, New York, 2000. · Zbl 0952.47036
[23] Gaffney, M.: A special Stokes’s theorem for complete Riemannian manifolds. Ann. of Math. (2) 60 (1954), 140-145. JSTOR: · Zbl 0055.40301
[24] Gaffney, M.: Hilbert spaces methodes in the theory of harmonic integrals. Trans. Amer. Math. Soc. 78 (1955), 426-444. JSTOR: · Zbl 0064.34303
[25] Gallot, S. and Meyer, D.: Opérateur de courbure et laplacien des formes différentielles d’une variété riemannnienne. J. Math. Pures Appl. (9) 54 (1975), no. 3, 259-284. · Zbl 0316.53036
[26] Gilbarg, D. and Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Math. Springer-Verlag, Berlin, 2001. · Zbl 1042.35002
[27] Grigor’yan, A. A.: On stochastically complete manifolds. DAN SSSR 290 (1986), 534-537. Engl. transl. Soviet Math. Dokl. 34 (1987), 310-313. · Zbl 0632.58041
[28] Grigor’yan, A. A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N. S.) 36 (1999), no. 2, 135-249. · Zbl 0927.58019
[29] Gundy, R.F.: Sur les transformations de Riesz pour le semi-groupe d’Ornstein-Uhlenbeck. C. R. Acad. Sci. Paris Sér. I. Math 303 (1986), no. 19, 967-970. · Zbl 0606.60063
[30] Gundy, R.F.: Some Topics in Probability and Analysis. CBMS Regional Conference Series in Math. 70 . Amer. Math. Soc., Providence, RI, 1989. · Zbl 0673.60050
[31] Gundy, R.F. and Varopoulos, N.Th.: Les transformations de Riesz et les intégrales stochastiques. C.R. Acad. Sci. Paris Sér. A-B. 289 (1979), no. 1, A13-A16. · Zbl 0413.60003
[32] Helmholtz, H.: Über Integrale der hydrodynamischen Gle ichungen, welche den Wirbelbewegunggen entsprechen. J. Reine Angew. Math. 55 (1858), 25-55. · ERAM 055.1448cj
[33] Iwaniec, T. and Martin, G.: Quasiregular mappings in even dimensions. Acta Math. 170 (1993), no. 1, 29-81. · Zbl 0785.30008
[34] Iwaniec, T. and Martin, G.: Riesz transforms and related singular integrals. J. Reine Angew. Math. 473 (1996), 25-57. · Zbl 0847.42015
[35] Jacob, N.: Pseudo differential operators and Markov processes. Vol. I. Fourier analysis and semigroups. Imperial College Press, London, 2002.
[36] Karp, L. and Li, P.: The heat equation on complete Riemannian manifolds. Unpublished manuscript, 1982.
[37] Larsso-Cohn, L.: On the constants in the Meyer inequality. Monatsch. Math. 137 (2002), no. 1, 51-56. · Zbl 1005.60069
[38] Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934), no. 1, 193-248. · JFM 60.0726.05
[39] Li, P. and Schoen, R.: \(L^p\) and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153 (1984), no. 3-4, 279-301. · Zbl 0556.31005
[40] Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. (9) 84 (2005), no. 10, 1295-1361. · Zbl 1082.58036
[41] Li, X.D.: Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds. Rev. Mat. Iberoamericana 22 (2006), no. 2, 591-648. · Zbl 1119.53022
[42] Li, X.D.: Martingale transforms and \(L^p\)-norm estimates of Riesz transforms on complete Riemannian manifolds. Probab. Theory Related Fields 141 (2008), no. 1-2, 247-281. · Zbl 1140.53022
[43] Li, X.D.: Sobolev inequalities on differential forms and \(L^p, q\)-cohomology on complete Riemannian manifolds. J. Geom. Anal. 20 (2010), 354-387. · Zbl 1192.46031
[44] Li, X.D.: On the weak \(L^p\)-Hodge decomposition over complete Riemannian manifolds. Probab. Theory Related Fields , doi: 10.1007/s00440-010-0270-2.
[45] Li, X.D.: On the strong \(L^p\)-Hodge decomposition over complete Riemannian manifolds. J. Funct. Anal. 257 (2009), no. 11, 3617-3646. · Zbl 1196.58001
[46] Li, X.D.: \(L^p\)-estimates and existence theorems of the \(\bar\partial\)-operator on complete Kähler manifolds. Adv. in Math. 224 (2010), 620-647. · Zbl 1208.53073
[47] Lions, P.L.: Mathematical Topics in Fluid Mechanics, Vol 1, Incompressible Methods, and Vol 2 Compressible Models. Oxford Lecture Series in Mathematics and its Applications 3 and 10 . The Clarendon Press, Oxford University Press, New York, 1966. · Zbl 0866.76002
[48] Lohoué, N.: Comparaison des champs de vecteurs et des puissances du Laplacien sur une variété riemannienne à courbure non positive. J. Funct. Anal. 61 (1985), no. 2, 164-201. · Zbl 0605.58051
[49] Lohoué, N.: Estimation des projecteurs de de Rham Hodge de certaines variétés Riemanniennes non-compactes. Math. Nachr. 279 (2006), no. 3, 272-298. · Zbl 1095.58006
[50] Malliavin, P.: Formule de la moyenne, calcul des perturbations et théorèmes d’annulation pour les formes harmoniques. J. Functional Analysis 17 (1974), 274-291. · Zbl 0425.58022
[51] Meyer, P.A.: Démonstrations probabilistes des inégalités de Littlewood-Paley. I. Les inégalités classiques. In Séminaire de Probabilités, X , 125-141. Lecture Notes in Math. 511 . Springer, Berlin, 1976. · Zbl 0332.60032
[52] Meyer, P.A.: Le dual de \(H^1(\mathbbR^v)\): démonstrations probabilistes. In Séminaire de Probabilités, XI , 132-195. Lecture Notes in Math. 581 . Springer, Berlin, 1977. · Zbl 0371.60057
[53] Meyer, P.A.: Transformations de Riesz pour les lois gaussiennes. In Seminar on Probability, XVIII , 179-193. Lecture Notes in Math. 1059 . Springer, Berlin, 1984. · Zbl 0543.60078
[54] Milgram, A. and Rosenbloom, P.: Harmonic forms and heat conduction, I: Closed Riemannian manifolds. Proc. Nat. Acad. Sci. 37 (1951), 180-184. JSTOR: · Zbl 0044.31703
[55] Morrey, C.B.Jr.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften 130 . Springer-Verlag, New York, 1966. · Zbl 0142.38701
[56] Norris, J.R.: A complete differential formalism for stochastic calculus in manifolds. In Séminaire de Probabilités XXVI , 189-209. Lecture Notes in Math. 1526 . Springer, Berlin, 1992. · Zbl 0791.58111
[57] Pichorides, S.K.: On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Studia Math. 44 (1972), 165-179. · Zbl 0238.42007
[58] Robbin, J.W., Rogers, R.C. and Temple, B.: On weak continuity and the Hodge decomposition. Trans. Amer. Math. Soc. 303 (1987), no. 2, 609-618. JSTOR: · Zbl 0634.35005
[59] Rogers, L.C.G. and Williams, D.: Diffusions, Markov processes and martingales, Vol. 1. Foundations. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. · Zbl 0977.60005
[60] Scott, C.: \(L^p\) theory of differential forms on manifolds. Trans. Amer. Math. Soc. 347 (1995), no. 6, 2075-2096. JSTOR: · Zbl 0849.58002
[61] Shigekawa, I.: Stochastic Analysis. Translations of Mathematical Monographs 224 . Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI, 2004. · Zbl 1064.60003
[62] Shigekawa, I. and Yoshida, N.: Littlewood-Paley-Stein inequality for a symmetric diffusion. J. Math. Soc. Japan 44 (1992), no. 2, 251-280. · Zbl 0764.60060
[63] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series 30 . Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[64] Stein, E.M.: Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies 63 . Princeton University Press, Princeton, N.J.; University Tokyo Press, Tokyo, 1970. · Zbl 0193.10502
[65] Strichartz, R.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52 (1983), no. 1, 48-79. · Zbl 0515.58037
[66] Strichartz, R.: \(L^p\)-contractive projections and the heat semigroup for differential forms. J. Funct. Anal. 65 (1986), no. 3, 348-357. · Zbl 0587.58044
[67] Stroock, D.W. and Varadhan, S.R.S.: Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233 . Springer-Verlag, Berlin-New York, 1979. · Zbl 0426.60069
[68] Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456 (1994), 173-196. · Zbl 0806.53041
[69] Witten, E.: Supersymmetry and Morse theory. J. Differential Geom. 17 (1982), no. 4, 661-692. · Zbl 0499.53056
[70] Yau, S.T.: On the heat kernel of a complete Riemannian manifold. J. Math. Pures Appl. (9) 57 (1978), no. 2, 191-201. · Zbl 0405.35025
[71] Yoshida, N.: Sobolev spaces on a Riemannian manifold and their equivalence. J. Math. Kyoto Univ. 32 (1992), no. 3, 621-654. · Zbl 0771.58005
[72] Yoshida, N.: The Littlewood-Paley-Stein inequality on an infinite dimensional manifold. J. Funct. Anal. 122 (1994), no. 2, 402-427. · Zbl 0804.58062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.