×

Taubes’s proof of the Weinstein conjecture in dimension three. (English) Zbl 1197.57023

The Weinstein Conjecture asserts that on a closed oriented odd-dimensional manifold with a contact form, the associated Reeb vector field has a closed orbit. The author states that “the eventual goal of this article is to explain Taubes’s proof of the Weinstein conjecture in dimension three”. This he does well in the 12 sections of the paper.
In the first nine sections he discusses the topics and gives many examples relevant to the conjecture, introducing the reader to Hamiltonian vector fields on symplectic manifolds, contact forms and Reeb orbits, Morse functions and Morse homology, Spectral flow, Taubes’s Theorem on the equivalence of the Seiberg-Witten and Gromov invariants on \(4\)-manifolds, Seiberg-Witten Floer theory on \(3\)-manifolds, the Seiberg-Witten equations and gauge transformations.
In section 10 he gives an outline of Taubes’s proof and he fills in some details in section 11. Finally in section 12 he discusses possible generalizations, for example he points out that the only known examples of closed oriented (connected) \(3\)-manifolds with contact forms having only finitely many Reeb orbits are lens spaces and he asks whether every contact form on a closed oriented \(3\)-manifold other than a lens space or \(S^3\) has infinitely many embedded Reeb orbits.

MSC:

57R17 Symplectic and contact topology in high or arbitrary dimension
53D40 Symplectic aspects of Floer homology and cohomology
53D42 Symplectic field theory; contact homology
57-02 Research exposition (monographs, survey articles) pertaining to manifolds and cell complexes
57N10 Topology of general \(3\)-manifolds (MSC2010)
57M50 General geometric structures on low-dimensional manifolds

References:

[1] Casim Abbas, The chord problem and a new method of filling by pseudoholomorphic curves, Int. Math. Res. Not. 18 (2004), 913 – 927. · Zbl 1105.53065 · doi:10.1155/S1073792804132236
[2] Casim Abbas, Kai Cieliebak, and Helmut Hofer, The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005), no. 4, 771 – 793. · Zbl 1098.53063 · doi:10.4171/CMH/34
[3] Peter Albers and Helmut Hofer, On the Weinstein conjecture in higher dimensions, Comment. Math. Helv. 84 (2009), no. 2, 429 – 436. · Zbl 1166.53052 · doi:10.4171/CMH/167
[4] Vladimir I. Arnold and Boris A. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. · Zbl 0902.76001
[5] D. Auroux, La conjecture de Weinstein en dimension \( 3\) [d’après C.H. Taubes], Séminaire Bourbaki, 2008-2009, no. 1002.
[6] Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. · Zbl 0744.58001
[7] Raoul Bott, Morse theory indomitable, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 99 – 114 (1989). · Zbl 0685.58009
[8] Frédéric Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. 30 (2002), 1571 – 1574. · Zbl 1021.53055 · doi:10.1155/S1073792802205048
[9] Frédéric Bourgeois, A Morse-Bott approach to contact homology, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) Fields Inst. Commun., vol. 35, Amer. Math. Soc., Providence, RI, 2003, pp. 55 – 77. · Zbl 1046.57017
[10] Frédéric Bourgeois, Kai Cieliebak, and Tobias Ekholm, A note on Reeb dynamics on the tight 3-sphere, J. Mod. Dyn. 1 (2007), no. 4, 597 – 613. · Zbl 1181.57035 · doi:10.3934/jmd.2007.1.597
[11] F. Bourgeois, T. Ekholm, and Y. Eliashberg, A Legendrian surgery long exact sequence for linearized contact homology, in preparation. · Zbl 1256.53049
[12] F. Bourgeois and K. Niederkrüger, Towards a good definition of algebraically overtwisted, arXiv:0709.3415 · Zbl 1207.53077
[13] K. Cieliebak and K. Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005), no. 4, 589 – 654. Conference on Symplectic Topology. · Zbl 1113.53053
[14] Vincent Colin, Emmanuel Giroux, and Ko Honda, Finitude homotopique et isotopique des structures de contact tendues, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 245 – 293 (French, with French summary). · Zbl 1268.57013 · doi:10.1007/s10240-009-0022-y
[15] V. Colin and K. Honda, Reeb vector fields and open book decompositions, arXiv:0809.5088. · Zbl 1266.57013
[16] S. K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 1, 45 – 70. · Zbl 0872.57023
[17] S. K. Donaldson, Topological field theories and formulae of Casson and Meng-Taubes, Proceedings of the Kirbyfest (Berkeley, CA, 1998) Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 87 – 102. · Zbl 0958.57031 · doi:10.2140/gtm.1999.2.87
[18] Y. Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989), no. 3, 623 – 637. · Zbl 0684.57012 · doi:10.1007/BF01393840
[19] Yakov Eliashberg, Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45 – 67. · Zbl 0731.53036
[20] Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume (2000), 560 – 673. GAFA 2000 (Tel Aviv, 1999). · Zbl 0989.81114 · doi:10.1007/978-3-0346-0425-3_4
[21] John B. Etnyre, Introductory lectures on contact geometry, Topology and geometry of manifolds (Athens, GA, 2001) Proc. Sympos. Pure Math., vol. 71, Amer. Math. Soc., Providence, RI, 2003, pp. 81 – 107. · Zbl 1045.57012 · doi:10.1090/pspum/071/2024631
[22] John B. Etnyre, Lectures on open book decompositions and contact structures, Floer homology, gauge theory, and low-dimensional topology, Clay Math. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 2006, pp. 103 – 141. · Zbl 1108.53050
[23] Oscar García-Prada, A direct existence proof for the vortex equations over a compact Riemann surface, Bull. London Math. Soc. 26 (1994), no. 1, 88 – 96. · Zbl 0807.53021 · doi:10.1112/blms/26.1.88
[24] Hansjörg Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, Cambridge, 2008. · Zbl 1153.53002
[25] Viktor L. Ginzburg, The Weinstein conjecture and theorems of nearby and almost existence, The breadth of symplectic and Poisson geometry, Progr. Math., vol. 232, Birkhäuser Boston, Boston, MA, 2005, pp. 139 – 172. · doi:10.1007/0-8176-4419-9_6
[26] Viktor L. Ginzburg and Başak Z. Gürel, A \?²-smooth counterexample to the Hamiltonian Seifert conjecture in \Bbb R\(^{4}\), Ann. of Math. (2) 158 (2003), no. 3, 953 – 976. · Zbl 1140.37356 · doi:10.4007/annals.2003.158.953
[27] Emmanuel Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 405 – 414 (French, with French summary). · Zbl 1015.53049
[28] J. Harrison, \?² counterexamples to the Seifert conjecture, Topology 27 (1988), no. 3, 249 – 278. · Zbl 0669.57011 · doi:10.1016/0040-9383(88)90009-2
[29] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), no. 3, 515 – 563. · Zbl 0797.58023 · doi:10.1007/BF01232679
[30] H. Hofer, K. Wysocki, and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125 – 255. · Zbl 1215.53076 · doi:10.4007/annals.2003.157.125
[31] Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. · Zbl 0805.58003
[32] M. Hutchings, The embedded contact homology index revisited, arXiv:0805.1240, to appear in the Yashafest proceedings. · Zbl 1207.57045
[33] Michael Hutchings and Michael Sullivan, Rounding corners of polygons and the embedded contact homology of \?³, Geom. Topol. 10 (2006), 169 – 266. · Zbl 1101.53053 · doi:10.2140/gt.2006.10.169
[34] Michael Hutchings and Clifford Henry Taubes, An introduction to the Seiberg-Witten equations on symplectic manifolds, Symplectic geometry and topology (Park City, UT, 1997) IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 103 – 142. · Zbl 0973.57013
[35] Michael Hutchings and Clifford Henry Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007), no. 1, 43 – 137. · Zbl 1157.53047
[36] Michael Hutchings and Clifford Henry Taubes, The Weinstein conjecture for stable Hamiltonian structures, Geom. Topol. 13 (2009), no. 2, 901 – 941. · Zbl 1169.53065 · doi:10.2140/gt.2009.13.901
[37] Arthur Jaffe and Clifford Taubes, Vortices and monopoles, Progress in Physics, vol. 2, Birkhäuser, Boston, Mass., 1980. Structure of static gauge theories. · Zbl 0457.53034
[38] Peter Kronheimer and Tomasz Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. · Zbl 1158.57002
[39] Greg Kuperberg, A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv. 71 (1996), no. 1, 70 – 97. · Zbl 0859.57017 · doi:10.1007/BF02566410
[40] Greg Kuperberg and Krystyna Kuperberg, Generalized counterexamples to the Seifert conjecture, Ann. of Math. (2) 143 (1996), no. 3, 547 – 576. , https://doi.org/10.2307/2118536 Greg Kuperberg and Krystyna Kuperberg, Generalized counterexamples to the Seifert conjecture, Ann. of Math. (2) 144 (1996), no. 2, 239 – 268. · Zbl 0856.57026 · doi:10.2307/2118592
[41] Krystyna Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2) 140 (1994), no. 3, 723 – 732. · Zbl 0856.57024 · doi:10.2307/2118623
[42] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. · Zbl 0688.57001
[43] Y-J. Lee and C.H. Taubes, Periodic Floer homology and Seiberg-Witten Floer cohomology, arXiv:0906.0383. · Zbl 1280.57029
[44] MSRI Hot Topics Workshop, Contact structures, dynamics and the Seiberg-Witten equations in dimension \( 3\), June 2008, videos at www.msri.org.
[45] Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 1066.53137
[46] Guowu Meng and Clifford Henry Taubes, \?\?= Milnor torsion, Math. Res. Lett. 3 (1996), no. 5, 661 – 674. · Zbl 0870.57018 · doi:10.4310/MRL.1996.v3.n5.a8
[47] Klaus Mohnke, Holomorphic disks and the chord conjecture, Ann. of Math. (2) 154 (2001), no. 1, 219 – 222. · Zbl 1007.53065 · doi:10.2307/3062116
[48] John W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. · Zbl 0846.57001
[49] Y-G. Oh and K. Zhu, Embedding property of \( J\)-holomorphic curves in Calabi-Yau manifolds for generic \( J\), arXiv:0805.3581. · Zbl 1193.53180
[50] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027 – 1158. · Zbl 1073.57009 · doi:10.4007/annals.2004.159.1027
[51] Peter Ozsváth and Zoltán Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326 – 400. · Zbl 1099.53058 · doi:10.1016/j.aim.2005.03.014
[52] Tim Perutz, Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007), 759 – 828. · Zbl 1143.53079 · doi:10.2140/gt.2007.11.759
[53] Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157 – 184. · Zbl 0358.70014 · doi:10.1002/cpa.3160310203
[54] A. Rechtman, Existence of periodic orbits for geodesible vector fields on closed \( 3\)-manifolds, arXiv:0904.2719. · Zbl 1214.37015
[55] Joel Robbin and Dietmar Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1 – 33. · Zbl 0859.58025 · doi:10.1112/blms/27.1.1
[56] Matthias Schwarz, Morse homology, Progress in Mathematics, vol. 111, Birkhäuser Verlag, Basel, 1993. · Zbl 0806.57020
[57] Matthias Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000), no. 2, 419 – 461. · Zbl 1023.57020 · doi:10.2140/pjm.2000.193.419
[58] Paul A. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. (2) 100 (1974), 386 – 400. · Zbl 0295.57010 · doi:10.2307/1971077
[60] C.H. Taubes, \( SW\Rightarrow Gr\): From the Seiberg-Witten equations to pseudo-holomorphic curves, in “Seiberg-Witten and Gromov invariants for symplectic 4-manifolds”, Internat. Press, 2000. · Zbl 0867.53025
[61] Clifford Henry Taubes, Seiberg Witten and Gromov invariants for symplectic 4-manifolds, First International Press Lecture Series, vol. 2, International Press, Somerville, MA, 2000. Edited by Richard Wentworth. · Zbl 0967.57001
[62] Clifford Henry Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117 – 2202. · Zbl 1135.57015 · doi:10.2140/gt.2007.11.2117
[63] Clifford Henry Taubes, The Seiberg-Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009), no. 3, 1337 – 1417. · Zbl 1200.57018 · doi:10.2140/gt.2009.13.1337
[64] Clifford Henry Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007), no. 3, 569 – 587. · Zbl 1178.58009
[65] C.H. Taubes, An observation concerning uniquely ergodic vector fields on \( 3\)-manifolds, arXiv:0811.3983. · Zbl 1267.57035
[66] C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I, arXiv:0811.3985. · Zbl 1275.57037
[67] C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology II-IV, preprints, 2008.
[68] C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology V, preprint, 2008. · Zbl 1276.57027
[69] Vladimir Turaev, A combinatorial formulation for the Seiberg-Witten invariants of 3-manifolds, Math. Res. Lett. 5 (1998), no. 5, 583 – 598. · Zbl 1002.57036 · doi:10.4310/MRL.1998.v5.n5.a3
[70] Michael Usher, Vortices and a TQFT for Lefschetz fibrations on 4-manifolds, Algebr. Geom. Topol. 6 (2006), 1677 – 1743. · Zbl 1131.57031 · doi:10.2140/agt.2006.6.1677
[71] Claude Viterbo, A proof of Weinstein’s conjecture in \?²\(^{n}\), Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 4, 337 – 356 (English, with French summary). · Zbl 0631.58013
[72] Alan Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2) 108 (1978), no. 3, 507 – 518. · Zbl 0403.58001 · doi:10.2307/1971185
[73] Paul H. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Differential Equations 33 (1979), no. 3, 336 – 352. , https://doi.org/10.1016/0022-0396(79)90069-X Alan Weinstein, On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Differential Equations 33 (1979), no. 3, 353 – 358. · Zbl 0424.34043 · doi:10.1016/0022-0396(79)90070-6
[74] Edward Witten, From superconductors and four-manifolds to weak interactions, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 3, 361 – 391. · Zbl 1148.81015
[75] E. Zehnder, Remarks on periodic solutions on hypersurfaces, Periodic solutions of Hamiltonian systems and related topics (Il Ciocco, 1986) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 209, Reidel, Dordrecht, 1987, pp. 267 – 279. · Zbl 0639.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.