×

Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems. (English) Zbl 1197.65096

Summary: The homotopy analysis method (HAM) is applied to numerically approximate the eigenvalues of the fractional Sturm-Liouville problems. The eigenvalues are not unique. These multiple solutions, i.e., eigenvalues, can be calculated by starting the HAM algorithm with one and the same initial guess and linear operator \(\mathcal{L}\). It can be seen in this paper that the auxiliary parameter \(\hbar,\) which controls the convergence of the HAM approximate series solutions, has another important application. This important application is predicting and calculating multiple solutions.

MSC:

65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
34A08 Fractional ordinary differential equations
34L16 Numerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators
65L20 Stability and convergence of numerical methods for ordinary differential equations
34B24 Sturm-Liouville theory

Software:

BVPh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University (1992)
[2] Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)
[3] Liao, S.J.: Notes on the homotopy analysis method: some definitions and theorems. In: Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 983–997 (2009) · Zbl 1221.65126
[4] Xu, H., Liao, S.J., You, X.C.: Analysis of nonlinear fractional partial differential equations with the homotopy analysis method. In: Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 1152–1156 (2009) · Zbl 1221.65286
[5] Cang, J., Tan, Y., Xu, H., Liao, S.J.: Series solutions of non-linear Riccati differential equations with fractional order. Chaos, Solitons Fractals 40, 1–9 (2009) · Zbl 1197.34006 · doi:10.1016/j.chaos.2007.04.018
[6] Song, L., Zhang, H.: Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. Phys. Lett. A 367, 88–94 (2007) · Zbl 1209.65115 · doi:10.1016/j.physleta.2007.02.083
[7] Jafari, H., Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. In: Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 1962–1969 (2009) · Zbl 1221.35439
[8] Hashim, I., Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs. In: Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 674–684 (2009) · Zbl 1221.65277
[9] Xu, H., Cang, J.: Analysis of a time fractional wave-like equation with the homotopy analysis method. Phys. Lett. A 372, 1250–1255 (2008) · Zbl 1217.35111 · doi:10.1016/j.physleta.2007.09.039
[10] Zurigat, M., Momani, S., Odibat, Z., Alawneh, A.: The homotopy analysis method for handling systems of fractional differential equations. Appl. Math. Model. 34, 24–35 (2010) · Zbl 1185.65140 · doi:10.1016/j.apm.2009.03.024
[11] Talay Akyildiz, F., Vajravelu, K., Liao, S.J.: A new method for homoclinic solutions of ordinary differential equations. Chaos, Solitons Fractals 39, 1073–1082 (2009) · Zbl 1197.65212 · doi:10.1016/j.chaos.2007.04.021
[12] Liao, S.J.: Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method. Nonlinear Anal.: Real World Appl. 10, 2455–2470 (2009) · Zbl 1163.35450 · doi:10.1016/j.nonrwa.2008.05.003
[13] Ghotbi, A.R., Bararnia, Domairry, G., Barari, A.: Investigation of a powerful analytical method into natural convection boundary layer flow. Commun. Nonlinear Sci. Numer. Simulat. 14, 2222–2228 (2009) · Zbl 1221.76145 · doi:10.1016/j.cnsns.2008.07.020
[14] Khan, M., Abbas, Z., Hayat, T.L: Analytic solution for flow of Sisko fluid through a porous medium Authors. Trans. Porous Media 71, 23–37 (2008) · doi:10.1007/s11242-007-9109-4
[15] Abbasbandy, S., Shirzadi, A.: The series solution of problems in calculus of variations via homotopy analysis method. Z. Naturforsch. A 64(a), 30–36 (2009)
[16] Abbasbandy, S., Hayat, T.: Solution of the MHD Falkner-Skan flow by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simulat. 14, 3591–3598 (2009) · Zbl 1221.76133 · doi:10.1016/j.cnsns.2009.01.030
[17] Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method. Phys. Lett. A 371, 72–82 (2007) · Zbl 1209.65104 · doi:10.1016/j.physleta.2007.05.094
[18] Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane-Emden equation. Phys. Lett. A 372, 6060–6065 (2008) · Zbl 1223.85004 · doi:10.1016/j.physleta.2008.08.002
[19] Liang, S., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. Commun. Nonlinear Sci. Numer. Simulat. 14, 4057–4064 (2009) · Zbl 1221.65281 · doi:10.1016/j.cnsns.2009.02.016
[20] Abbasbandy, S., Hayat, T., Ellahi, R., Asghar, S.: Numerical results of flow in a third grade fluid between two porous walls. Z. Naturforsch. A 64(a), 59–64 (2009)
[21] López, J.L., Abbasbandy, S., López-Ruiz, R.: Formulas for the amplitude of the van der Pol limit cycle through the homotopy analysis method. In: Scholarly Research Exchange, vol. 2009, article ID 854060 (2009)
[22] Abbasbandy, S., Magyari, E., Shivanian, E.: The homotopy analysis method for multiple solutions of nonlinear boundary value problems. In: Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 3530–3536 (2009) · Zbl 1221.65170
[23] Al-Mdallal, Q.M.: An efficient method for solving fractional Sturm-Liouville problems. Chaos, Solitons Fractals 40, 183–189 (2009) · Zbl 1197.65097 · doi:10.1016/j.chaos.2007.07.041
[24] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
[25] Podlubny, I.: Fractional Differential Equations. Academic, New York (1999) · Zbl 0924.34008
[26] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974) · Zbl 0292.26011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.