Assessment of a shear-improved subgrid stress closure for turbulent channel flows. (English) Zbl 1197.76071

Summary: A subgrid-scale model pertaining to Large Eddy Simulation (LES) was developed by modifying the standard Smagorinsky model in order to take into account the inhomogeneities of the mean flow. According to this model, the magnitude of mean strain-rate is subtracted from the magnitude of the resolved strain-rate tensor for the calculation of eddy-viscosity. In this work, we perform large eddy simulation of turbulent channel flows at low and moderate Reynolds numbers. The predicted results compare well with the DNS data and results due to dynamic LES closure. The focus of this study has been on the assessment of capabilities of the model pertaining to the description of flow physics for the Reynolds numbers of interest. Also, the results are intended to establish the dominant effects of shear-length-scale near the wall. The simulations highlight other statistical features and turbulence characteristics too in order to broaden the applicability of the model.


76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI


[1] Deardroff, J. W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. fluid mech. 41, 453-459 (1970) · Zbl 0191.25503 · doi:10.1017/S0022112070000691
[2] Saugat, P.: Large eddy simulation for incompressible flows: an introduction, (2002)
[3] Smagorinsky, J.: General circulation experiments with the primitive equations. I. the basic equations, Mon. weather rev. 91, 99-164 (1963)
[4] D.K. Lilly, The representation of small-scale turbulence in numerical simulation experiments, in: Proc. IBM Sci. Comput. Symp. Environ. Sci., 1967, p. 195.
[5] Moin, P.; Kim, J.: Numerical investigation of turbulent channel flow, J. fluid mech. 118, 341-377 (1982) · Zbl 0491.76058 · doi:10.1017/S0022112082001116
[6] Piomelli, U.; Zang, T. A.: Large-eddy simulation of transitional channel flow, Comput. phys. Commun. 65, 224-230 (1991) · Zbl 0900.76079 · doi:10.1016/0010-4655(91)90175-K
[7] Van Driest, E. R.: On turbulent flow near a wall, J. aeronaut. Sci. 23, 1007-1011 (1956) · Zbl 0073.20802
[8] Germano, M.; Pomelli, U.; Moin, P.; Cabot, A.: Dynamic subgrid-scale eddy viscosity model, Phys. fluid A 3, 1760-1765 (1991) · Zbl 0825.76334 · doi:10.1063/1.857955
[9] Frisch, U.: Turbulence: the legacy of A.N. Kolmogorov, (1995) · Zbl 0832.76001
[10] Perot, B.; Moin, P.: Shear-free turbulent boundary layers. Part 1. Physical insight into near wall turbulence, J. fluid mech. 295, 199-227 (1995) · Zbl 0869.76028
[11] Toschi, F.; Leveque, E.; Ruiz-Chavarria, G.: Shear effects in nonhomogeneous turbulence, Phys. rev. Lett. 85, 1436-1439 (2000)
[12] Leveque, E.; Toschi, F.; Shao, L.; Bertoglio, J. P.: Shear-improved smagorinsky model for large-eddy simulation of wall-bounded turbulent flows, J. fluid mech. 570, 491-502 (2007) · Zbl 1105.76034 · doi:10.1017/S0022112006003429
[13] Monin, A. S.; Yaglom, A. M.: Statistical fluid mechanics, (1975) · Zbl 1140.76003
[14] Sagaut, P.; Deck, S.; Terracol, M.: Multiscale and multiresolution approaches in turbulence, (2006) · Zbl 1275.76004
[15] F. Toschi, H. Kobayashi, U. Piomelli, G. Iaccarino, Backward-facing step calculations using the shear improved Smagorinsky model, in: Proc. of Summer Program, CTR, 2006, pp. 87 – 97.
[16] Harlow, F. H.; Welch, J. E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. fluid 8, 2182-2188 (1965) · Zbl 1180.76043 · doi:10.1063/1.1761178
[17] Srinivas, Y.; Biswas, G.; Parihar, A. S.; Ranjan, R.: Large-eddy simulation of high Reynolds number turbulent flow past a square cylinder, ASCE J. Eng. mech. 132, 327-335 (2006)
[18] K. Iwamoto, Y. Suzuki, N. Kasagi, Database of Fully Developed Channel Flow, THTLAB Internal Report, No. ILR-0201, 2002. <http://www.thtlab.t.utokyo.ac.jp>.
[19] Moser, R. D.; Kim, J.; Mansour, N. N.: Direct numerical simulation of turbulent channel flow up to re\(\tau =590\), Phys. fluid 11, 943-945 (1999) · Zbl 1147.76463 · doi:10.1063/1.869966
[20] Piomelli, U.: High Reynolds number calculations using the dynamic subgrid-scale stress model, Phys. fluid A 5, No. 6, 1484-1490 (1993)
[21] Abe, H.; Kawamura, H.; Matsuo, Y.: Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence, ASME J. Fluid eng. 123, 382-393 (2001)
[22] Pope, S. B.: Turbulent flows, (2000) · Zbl 0966.76002
[23] Chong, M. S.; Perry, A. E.; Cantwell, B. J.: A general classification of three-dimensional flow fields, Phys. fluid A 4, 765-777 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.