Wang, Mingliang; Li, Xiangzheng; Zhang, Jinliang Sub-ODE method and solitary wave solutions for higher order nonlinear Schrödinger equation. (English) Zbl 1197.81129 Phys. Lett., A 363, No. 1-2, 96-101 (2007). Summary: With the aid of an ordinary differential equation (ODE) involving an arbitrary positive power of dependent variable and its various positive solutions, three types of solitary wave solution of the higher order nonlinear Schrödinger equation (NLSE) with non-Kerr terms have been found out, which are the bell type solitary waves, the kink type solitary waves and the algebraic solitary waves, provided that the coefficients of the higher order NLSE satisfy certain constraint conditions. Cited in 32 Documents MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 35Q55 NLS equations (nonlinear Schrödinger equations) 35Q51 Soliton equations Keywords:higher order nonlinear Schrödinger equation; sub-ODE; Bell type solitary waves; kink type solitary waves; algebraic solitary waves Software:RATH PDF BibTeX XML Cite \textit{M. Wang} et al., Phys. Lett., A 363, No. 1--2, 96--101 (2007; Zbl 1197.81129) Full Text: DOI References: [1] Radhakrishnan, R.; Kundu, A.; Lakshmanan, M., Phys. Rev. E, 60, 3314 (1999) [2] Anderson, D.; Lisak, M., Phys. Rev. A, 27, 1393 (1983) [3] Mihalache, D.; Truta, A.; Crasovan, L. C., Phys. Rev. E, 56, 1064 (1997) [4] Gedalin, M.; Scott, T. C.; Band, Y. B., Phys. Rev. Lett., 78, 448 (1997) [5] Akhmediev, N.; Ankiewicz, A., Solitons: Nonlinear Pulses and Beams (1997), Chapman & Hall: Chapman & Hall London · Zbl 1218.35183 [6] Enns, R. H.; Rangenekar, S. S.; Kaplan, A. E., Phys. Rev. A, 36, 1270 (1987) [7] Kumar, A.; Kurz, T.; Lauterbon, W., Phys. Lett. A, 236, 367 (1997) [8] Pushkarov, D. I.; Tanev, S., Opt. Commun., 124, 354 (1996) [9] Tanev, S.; Pushkarov, D. I., Opt. Commun., 141, 322 (1997) [10] Zhou, C.; He, X. T.; Chen, S., Phys. Rev. A, 46, 2277 (1992) [11] Honzatko, P., Opt. Commun., 127, 363 (1996) [12] Hong, W. P., Opt. Commun., 194, 217 (2001) [13] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0762.35001 [14] Hirota, R., J. Math. Phys., 14, 810 (1973) [15] Wang, M. L., Phys. Lett. A, 199, 169 (1995) [16] Wang, M. L., Phys. Lett. A, 213, 279 (1996) [17] Wang, M. L.; Zhou, Y. B.; Li, Z. B., Phys. Lett. A, 216, 67 (1996) [18] Wang, M. L.; Wang, Y. M., Phys. Lett. A, 287, 211 (2001) [19] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 289, 69 (2001) [20] Yan, Z. Y., Chaos Solitons Fractals, 18, 299 (2003) [21] Parkes, E. J.; Duffy, B. R., Comput. Phys. Commun., 98, 288 (1996) [22] Li, Z. B.; Liu, Y. P., Comput. Phys. Commun., 148, 256 (2002) [23] Fan, E. G., Phys. Lett. A, 277, 212 (2000) [24] Yan, Z. Y., Phys. Lett. A, 292, 100 (2001) [25] Li, B.; Chen, Y.; Zhang, H. Q., Chaos Solitons Fractals, 15, 647 (2003) [26] Yomba, E., Chaos Solitons Fractals, 20, 1135 (2004) [27] Sirendaoreji; Jiong, S., Phys. Lett. A, 309, 387 (2003) [28] Wang, M. L.; Zhou, Y. B., Phys. Lett. A, 318, 84 (2003) [29] Zhou, Y. B.; Wang, M. L.; Wang, Y. M., Phys. Lett. A, 308, 31 (2003) [30] Wang, M. L.; Li, X. Z., Chaos Solitons Fractals, 24, 1257 (2005) [31] Li, X. Y.; Yang, S.; Wang, M. L., Chaos Solitons Fractals, 25, 629 (2005) [32] Li, X. Z.; Zhang, J. L.; Wang, Y. M., Acta Phys. Sinica, 53, 4045 (2004) [33] Yomba, E., Phys. Lett. A, 336, 463 (2005) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.