zbMATH — the first resource for mathematics

Phase transition in ferromagnetic Ising models with non-uniform external magnetic fields. (English) Zbl 1197.82038
The authors study the phase transition phenomenon for the Ising model under the action of a non-uniform external magnetic field \(\mathbf{h}=(h_i)_{i\in \mathbb Z^d}\) and prove following theorems.
Theorem 1. If the magnetic field \(\mathbf{h}\) belongs to \(l_1(\mathbb Z^2)\), then the model presents a phase transition when \(J>3\|\mathbf{h}\|_1\).
Theorem 2. If \(\mathbf{h}\in l_{\infty}(\mathbb Z^d)\) is such that \(\liminf_{i\in\mathbb Z^d} h_i>0\), then the Ising model with external field \(\mathbf{h}\) has no phase transition.

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
Full Text: DOI arXiv
[1] Basuev, A.G.: Ising model in half-space: A series of phase transitions in low magnetic fields. Theor. Math. Phys. 153, 1539–1574 (2007) · Zbl 1139.82309 · doi:10.1007/s11232-007-0132-y
[2] Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der Mathematischen Wissenschaften, vol. 271. Springer, New York (1985) · Zbl 0566.60097
[3] Fontes, L.R.G., Jordão Neves, E.: Phase uniqueness and correlation length in diluted-field Ising models. J. Stat. Phys. 80, 1327–1339 (1995) · Zbl 1081.82574 · doi:10.1007/BF02179873
[4] Fröhlich, J., Pfister, C.E.: Semi-infinite Ising model II. The wetting and layering transitions. Commun. Math. Phys. 112, 51–74 (1987) · Zbl 1108.82302 · doi:10.1007/BF01217679
[5] Georgii, H.-O.: Spontaneous magnetization of randomly dilute ferromagnets. J. Stat. Phys. 25, 369–396 (1981) · doi:10.1007/BF01010795
[6] Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter, Berlin (1988)
[7] Jonasson, J., Steif, J.E.: Amenability and phase transition in the Ising model. J. Theor. Probab. 12, 549–559 (1999) · Zbl 0940.60093 · doi:10.1023/A:1021690414168
[8] Lebowitz, J.: Coexistence of phases in Ising ferromagnetics. J. Stat. Phys. 16, 462–476 (1977)
[9] Lebowitz, J., Martin-Löf, A.: On the uniqueness of the equilibrium state for Ising spin systems. Commun. Math. Phys. 25, 276–282 (1972) · doi:10.1007/BF01877686
[10] Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions II. Lattice gas and Ising model. Phys. Rev. 87, 404–409 (1952) · Zbl 0048.43401 · doi:10.1103/PhysRev.87.410
[11] Lieb, E.H., Ruelle, D.: A property of zeros of the partition function for Ising spin systems. J. Math. Phys. 13(5), 781–784 (1972) · doi:10.1063/1.1666051
[12] Lieb, E.H., Sokal, A.D.: A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80, 153–179 (1981) · doi:10.1007/BF01213009
[13] Newman, C.M.: Inequalities for Ising models and field theories which obey the Lee-Yang theorem. Commun. Math. Phys. 41, 1–9 (1975) · doi:10.1007/BF01608542
[14] Olivieri, E., Vares, M.E.: Large Deviations and Metastability. Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge (2005)
[15] Pfister, C.E.: Large deviations and phase separation in the two-dimensional Ising model. Helv. Phys. Acta 64, 953–1054 (1991)
[16] Ruelle, D.: On the use of ”small external fields” in the problem of symmetry breakdown in statistical mechanics. Ann. Phys. 69, 364–374 (1972) · doi:10.1016/0003-4916(72)90181-9
[17] Velenik, Y.: Phase separation as a large deviations problem. PhD Thesis, Lausanne (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.