zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The dynamics of Bertrand model with bounded rationality. (English) Zbl 1197.91142
Summary: The paper considers a Bertrand model with bounded rational. A duopoly game is modelled by two nonlinear difference equations. By using the theory of bifurcations of dynamical systems, the existence and stability for the equilibria of this system are obtained. Numerical simulations used to show bifurcations diagrams, phase portraits for various parameters and sensitive dependence on initial conditions. We observe that an increase of the speed of adjustment of bounded rational player may change the stability of Nash equilibrium point and cause bifurcation and chaos to occur. The analysis and results in this paper are interesting in mathematics and economics. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
91B54Special types of economies
37N40Dynamical systems in optimization and economics
91B62Growth models in economics
37A99Ergodic theory
91A26Rationality, learning (game theory)
WorldCat.org
Full Text: DOI
References:
[1] Cournot, A.: Recherches sur LES principes mathematics de la theorie de la richesse, Hachette (1838) · Zbl 0174.51801
[2] Bertrand, J.: Revue de la thórie de la recherche sociale et des recherches sur LES principes math’ematiques de la thématiques de la th’eorie des richesses, J des savants, 499-508 (1883)
[3] Agiza, H. N.; Elsadany, A. A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players, Appl math comput 149, 843-860 (2004) · Zbl 1064.91027 · doi:10.1016/S0096-3003(03)00190-5
[4] Puu, T.: Chaos in duopoly pricing, Chaos, solitons & fractals 1, 573-581 (1991) · Zbl 0754.90015
[5] Agiza, H. N.: Explicit stability zones for cournot games with 3 and 4 competitors, Chaos, solitons & fractals 9, 1955-1966 (1998) · Zbl 0952.91003
[6] Agiza, H. N.: On the stability, bifurcations, chaos and chaos control of kopel map, Chaos, solitons & fractals 11, 1909-1916 (1999) · Zbl 0955.37022 · doi:10.1016/S0960-0779(98)00210-0
[7] Kopel, M.: Simple and complex adjustment dynamics in cournot duopoly models, Chaos, solitons & fractals 12, 2031-2048 (1996) · Zbl 1080.91541 · doi:10.1016/S0960-0779(96)00070-7
[8] Zhang, Jixiang; Da, Qingli; Wang, Yanhua: Analysis of nonlinear duopoly game with heterogeneous players, Econ model 24, 138-148 (2007)
[9] Gravelle, H.; Rees, R.: Microeconomics, (1992)
[10] Bierman, H. S.; Fernandez, L.: Game theory with economic applications, (1998)
[11] Dixit, A.: Comparative statics for oligopoly, Int econ rev 27, 107-122 (1986) · Zbl 0584.90012 · doi:10.2307/2526609