zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust fuzzy control of a class of fuzzy bilinear systems with time-delay. (English) Zbl 1197.93106
Summary: This paper presents robust fuzzy controllers for a class of T-S fuzzy bilinear systems (FBSs) with time-delay. First, we adopt the parallel distributed compensation (PDC) method to design a fuzzy controller to stabilize the T-S FBS with time-delay. The stability conditions of the overall fuzzy control system are formulated by linear matrix inequalities (LMIs). Secondly, we propound some LMI conditions to set up the robust controller to stabilize the uncertain T-S FBS with time-delay. Finally, the validity and applicability of the proposed schemes are demonstrated by simulations. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
93C42Fuzzy control systems
93B51Design techniques in systems theory
93C23Systems governed by functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Mohler, R. R.: Nonlinear systems: vol. 2, application to bilinear control, (1991) · Zbl 0789.93059
[2] Mohler, R. R.: Bilinear control processes, (1973) · Zbl 0343.93001
[3] Chiou, J. S.; Kung, F. C.; Li, T. H. S.: Robust stabilization of a class of singularly perturbed discrete bilinear systems, IEEE trans automat contr 45, 1187-1190 (2000) · Zbl 0979.93100 · doi:10.1109/9.863604
[4] Elliott, D. L.: Bilinear systems in encyclopedia of electrical engineering, (1999)
[5] Wang, C. W.; Wang, W. Y.; Chan, M. L.: Design of sliding mode controllers for bilinear systems with time varying uncertainties, IEEE tran syst man cybern 34, 639-645 (2004)
[6] Aganovic, Z.; Gajic, Z.: Linear optimal control of bilinear systems: with applications to singular perturbations and weak coupling, (1995) · Zbl 0885.93005
[7] Wang, H. O.; Tanaka, K.; Griffin, M. F.: An approach to fuzzy control of nonlinear systems: stability and design issues, IEEE trans fuzzy syst 4, 14-23 (1996)
[8] Tanaka, K.; Ikeda, T.; Wang, H. O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs, IEEE trans fuzzy syst 6, No. 2, 250-265 (1998)
[9] Tanaka, K.; Wang, H. O.: Fuzzy control systems design and analysis: a linear matrix inequality approach, (2001)
[10] Feng, G.; Ma, J.: Quadratic stabilization of uncertain discrete-time fuzzy dynamic systems, IEEE trans circuit syst 48, No. 11, 1337-1344 (2001)
[11] Hsiao FH, Hwang JD. Decentralized stabilization of fuzzy large-scale systems. In: Proc IEEE conf decision and control, Sydney, 2000. p. 3447 -- 52.
[12] Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control, IEEE trans syst man cybern 15, 116-132 (1985) · Zbl 0576.93021
[13] Tanaka, K.: Stabilization and stability of fuzzy-neural-linear control systems, IEEE trans fuzzy syst 3, No. 4, 438-447 (1995)
[14] Kiriakidis, K.: Fuzzy model-based control of complex plants, IEEE tran fuzzy syst 6, 517-529 (1998)
[15] Zuo, X. Q.; Fan, Y. S.: A chaos search immune algorithm with its application to neuro-fuzzy controller design, Chaos, solitons & fractals 30, No. 1, 94-109 (2006) · Zbl 1221.92003 · doi:10.1016/j.chaos.2005.08.126
[16] Yau, H. T.; Chen, C. L.: Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems, Chaos, solitons & fractals 30, No. 3, 709-718 (2006)
[17] Li, T. H. S.; Chang, S. J.; Tong, W.: Discrete-time optimal fuzzy controller design: global concept approach, IEEE tran fuzzy syst 4, 491-501 (2004)
[18] Lee, H. J.; Park, J. B.; Chen, G.: Robust fuzzy control of nonlinear systems with parametric uncertainties, IEEE tran fuzzy syst 4, 491-501 (2004)
[19] Kim, E.; Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems, IEEE trans fuzzy syst 8, 523-534 (2000)
[20] Feng, G.; Chen, G.: Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos, solitons & fractals 23, No. 2, 459-467 (2005) · Zbl 1061.93501 · doi:10.1016/j.chaos.2004.04.013
[21] Kim, J. H.; Park, C. W.; Kim, E.; Park, M.: Adaptive synchronization of T -- S-S fuzzy chaotic systems with unknown parameters, Chaos, solitons & fractals 24, No. 5, 1353-1361 (2005) · Zbl 1092.37512
[22] Mangoubi, R.: Robust estimation and failure detection: a concise treatment, (1998)
[23] Cao, Y. Y.; Frank, P. M.: Analysis and synthesis of nonlinear time-delay system via fuzzy control approach, IEEE trans fuzzy syst 8, No. 2, 200-211 (2000)
[24] Chen, J. D.: Robust H$\infty $ output dynamic observer-based control of uncertain time-delay systems, Chaos, solitons & fractals 31, No. 2, 391-403 (2007) · Zbl 1142.93329 · doi:10.1016/j.chaos.2005.09.076
[25] Cui, B. T.; Hua, M. G.: Robust passive control for uncertain discrete-time systems with time-varying delays, Chaos, solitons & fractals 29, No. 2, 331-341 (2006) · Zbl 1147.93034 · doi:10.1016/j.chaos.2005.08.039
[26] Hsiao, F. H.; Hwang, J. D.; Chen, C. W.; Tsai, Z. R.: Stabilization of linear systems with time-varying delay, IEEE tran fuzzy syst 13, 152-163 (2005)
[27] Lien, C. H.: Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-varying delays in state and control input, Chaos, solitons & fractals 31, No. 4, 889-899 (2007) · Zbl 1143.93338 · doi:10.1016/j.chaos.2005.10.080
[28] Cao, Y. Y.; Sun, Y. X.: Robust stabilization of uncertain systems with time-varying multi-state-delay, IEEE trans automat control 43, 1484-1488 (1998) · Zbl 0956.93057 · doi:10.1109/9.720514
[29] Cheres, E.; Gutman, S.; Palmor, Z. J.: Stabilization of uncertain dynamic systems including state delay, IEEE trans automat contr 34, 1199-1203 (1989) · Zbl 0693.93059 · doi:10.1109/9.40753
[30] Lee, K. R.; Kim, J. H.; Jeung, E. T.; Park, H. B.: Output feedback robust H$\infty $ control of uncertain fuzzy dynamic systems with time-varying delay, IEEE trans fuzzy syst 8, 657-664 (2000)
[31] Kiriakidis, K.: Fuzzy model-based control of complex plants, IEEE trans fuzzy syst 6, 517-529 (1998)
[32] Lien, C. H.: Further results on delay-dependent robust stability of uncertain fuzzy systems with time-varying delay, Chaos, solitons & fractals 28, No. 2, 422-427 (2006) · Zbl 1091.93022 · doi:10.1016/j.chaos.2005.05.039
[33] Lam, H. K.; Leung, F. H. F.; Tam, P. K. S.: Stable and robust fuzzy control for uncertain nonlinear systems, IEEE trans syst man cybern 30, 825-840 (2004)
[34] Tao, C. W.; Taur, J. S.: Robustness design of nonlinear dynamic systems via fuzzy linear control, IEEE trans fuzzy syst 13, 30-41 (2005)
[35] Li, T. H. S.; Tsai, S. H.: T -- S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems, IEEE tran fuzzy syst 15, 494-506 (2007)