zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent robust BIBO stabilization of uncertain system via LMI approach. (English) Zbl 1197.93145
Summary: This paper addresses the problem of robust BIBO stabilization for the uncertain time-delay system. A novel delay-dependent stabilizable criterion is presented by a quadratic Lyapunov function and the method of the variation of parameters to guarantee that bounded input can lead to bounded output. The proposed design condition is formulated in terms of linear matrix inequality (LMI) which can be easily solved by LMI Toolbox in Matlab. Finally, numerical examples are given to illustrate the effectiveness of our results. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

93D21Adaptive or robust stabilization
34K20Stability theory of functional-differential equations
93D25Input-output approaches to stability of control systems
Full Text: DOI
[1] Kharitonov, V. L.; Plischke, E.: Lyapunov matrices for time-delay systems, Syst control lett 55, 697-706 (2006) · Zbl 1100.93045 · doi:10.1016/j.sysconle.2006.01.005
[2] Gao, H. J.; Lam, J.; Wang, Z. D.: Discrete bilinear stochastic systems with time-varying delay: stability analysis and control synthesis, Chaos, solitons & fractals 34, 394-404 (2007) · Zbl 1134.93413 · doi:10.1016/j.chaos.2006.03.027
[3] Phat, V. N.; Niamsup, P.: Stability of linear time-varying delay systems and applications to control problems, J comput appl math 194, 343-356 (2006) · Zbl 1161.34353 · doi:10.1016/j.cam.2005.07.021
[4] Xu, S. Y.; Chen, T. W.: Robust H$\infty $ control for uncertain discrete-time systems with time-varying delays via exponential output feedback controllers, Syst control lett 51, 171-183 (2004) · Zbl 1157.93371 · doi:10.1016/j.sysconle.2003.08.002
[5] Liu, X. Z.: Stability of impulsive control systems with time delay, Math comput modelling 39, 511-519 (2004) · Zbl 1081.93021 · doi:10.1016/S0895-7177(04)90522-5
[6] Kotsios, S.: A note on BIBO stability of bilinear systems, J franklin inst 332, No. 6, 755-760 (1995) · Zbl 0852.93083 · doi:10.1016/0016-0032(95)00072-0
[7] Bose, T.; Chen, M. Q.: BIBO stability of the discrete bilinear system, Digital signal process 5, 160-166 (1995)
[8] Fornasini, E.; Valcher, M. E.: On some connections between bilinear input/output maps and 2D systems, Nonlinear anal 30, 1995-2005 (1997) · Zbl 0895.93004 · doi:10.1016/S0362-546X(97)00371-4
[9] Xu, D. Y.; Zhong, S. M.: The BIBO stabilization of multivariable feedback systems, J UEST China 24, 90-96 (1995)
[10] Xu, D. Y.; Zhong, S. M.: BIBO stabilization of large-scale systems, Control theory appl 12, 758-763 (1995)
[11] Li, P.; Zhong, S. M.: BIBO stabilization of time-delayed system with nonlinear perturbation, Appl math comput (2007) · Zbl 1130.93046
[12] Li, P.; Zhong, S. M.: BIBO stabilization for system with multiple mixed delays and nonlinear perturbations, Appl math comput (2007)
[13] Partington, J. R.; Bonnet, C.: H$\infty $ and BIBO stabilization of delay systems of neutral type, Syst control lett 52, 283-288 (2004) · Zbl 1157.93367 · doi:10.1016/j.sysconle.2003.09.014
[14] Shahruz, S. M.; Sakyaman, N. A.: How to have narrow-stripe semiconductor lasers self-pulsate, Appl math comput 130, 11-27 (2002) · Zbl 1021.78007 · doi:10.1016/S0096-3003(01)00094-7
[15] Wu, H.; Mizukami, K.: Robust stabilization of uncertain linear dynamical systems, Int J systems sci 24, 265-276 (1993) · Zbl 0781.93074 · doi:10.1080/00207729308949487
[16] Corless, M.; Garofalo, F.; Gilelmo, L.: New results on composite control of singularly perturbed uncertain linear systems, Automatica 29, 387-400 (1993) · Zbl 0772.93062 · doi:10.1016/0005-1098(93)90131-C
[17] Lien, C. H.: Delay-dependent and delay-independent guaranteed cost control for uncertain neutral systems with time-varying delays via LMI approach, Chaos, solitons & fractals 33, 1017-1027 (2007) · Zbl 1136.93034 · doi:10.1016/j.chaos.2006.01.066
[18] Shi, P.; Dragan, V.: Asymptotic H1 control of singularly perturbed systems with parametric uncertainties, IEEE trans autom control 44, No. 9, 1738-1742 (1999) · Zbl 0958.93066 · doi:10.1109/9.788543