zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Foundations of nabla fractional calculus on time scales and inequalities. (English) Zbl 1198.26033
Summary: Here we develop the nabla fractional calculus on time scales. Then we produce related integral inequalities of types: Poincaré, Sobolev, Opial, Ostrowski and Hilbert-Pachpatte. Finally we give inequality applications on the time scales $\bbfR$, $\bbfZ$.

26E70Real analysis on time scales or measure chains
26A33Fractional derivatives and integrals (real functions)
Full Text: DOI
[1] G. Anastassiou, Nabla time scales inequalities, 2009 (submitted for publication). · Zbl 1211.26025
[2] Anderson, D. R.: Taylor polynomials for nabla dynamic equations on times scales, Panamer. math. J. 12, No. 4, 17-27 (2002) · Zbl 1026.34011
[3] Anderson, D.; Bullock, J.; Erbe, L.; Peterson, A.; Tran, H.: Nabla dynamic equations on time scales, Panamer. math. J. 13, No. 1, 1-47 (2003) · Zbl 1032.39007
[4] Atici, F.; Biles, D.; Lebedinsky, A.: An application of time scales to economics, Math. comput. Modelling 43, 718-726 (2006) · Zbl 1187.91125 · doi:10.1016/j.mcm.2005.08.014
[5] Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications, (2001) · Zbl 0978.39001
[6] S. Hilger, Ein Maßketten kalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, Germany (1988). · Zbl 0695.34001
[7] Martins, N.; Torres, D.: Calculus of variations on time scales with nabla derivatives, Nonlinear anal. 71, No. 12, 763-773 (2009)
[8] M. Bohner, G.S. Guseinov, Multiple Lebesgue integration on time scales, Adv. Difference Equ. (2006) 1--12 (Article ID 26391)doi:10.1155/ADE/2006/26391. · Zbl 1139.39023
[9] Bohner, M.; Guseinov, G.: Double integral calculus of variations on time scales, Comput. math. Appl. 54, 45-57 (2007) · Zbl 1131.49019 · doi:10.1016/j.camwa.2006.10.032
[10] Guseinov, G.: Integration on time scales, J. math. Anal. appl. 285, 107-127 (2003) · Zbl 1039.26007 · doi:10.1016/S0022-247X(03)00361-5
[11] Liu, Wenjun; Ngô, Quôc Anh; Chen, Wenbing: Ostrowski type inequalities on time scales for double integrals, Acta appl. Math. 110, 477-497 (2010) · Zbl 1194.26030 · doi:10.1007/s10440-009-9456-y
[12] Whittaker, E. T.; Watson, G. N.: A course in modern analysis, (1927) · Zbl 53.0180.04
[13] M. Rafi Segi Rahmat, M. Salmi Md Noorani, Fractional integrals and derivatives on time scales with an application, Comput. Math. Appl., 2009, manuscript. · Zbl 1170.18300
[14] Atici, F.; Eloe, P.: Discrete fractional calculus with the nabla operator, Electron. J. Qual. theory differ. Equ., No. 1, 1-99 (2009) · Zbl 1189.39004
[15] M. Bohner, H. Luo, Singular second-order multipoint dynamic boundary value problems with mixed derivatives, Adv. Difference Equ. (2006) 1--15 (Article ID 54989) doi:10.1155/ADE/2006/54989. · Zbl 1139.39024 · doi:10.1155/ADE/2006/54989