zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spatiotemporal complexity of a predator-prey system with the effect of noise and external forcing. (English) Zbl 1198.34080
Summary: We present a spatial version of the Ivlev-type predator-prey model which contains some important factors, such as noise on predator, external periodic forcing and diffusion processes on both predator and prey. From the numerical results, we know that noise or external periodic forcing can induce instability and enhance the oscillation of the species density, and the cooperation between noise and external periodic forcing inherent to the deterministic dynamics of periodically driven models gives rise to the appearance of a rich transport phenomenology. Furthermore, we demonstrate that the spatially extended system exhibits a resonant patterns and frequency-locking phenomena. Our results show that noise and external periodic forcing play a prominent role in the predator-prey model. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
34C60Qualitative investigation and simulation of models (ODE)
37N25Dynamical systems in biology
92D25Population dynamics (general)
WorldCat.org
Full Text: DOI
References:
[1] Ai, B.; Chen, W.; Wang, X.; Liu, G.; Wen, D.; Xie, H.: Noise in an insect outbreak model, Chin J phys 41, 422-429 (2003)
[2] Ai, B.; Wang, X.; Liu, G.; Liu, L.: Correlated noise in a logistic growth model, Phys rev E 67, 022903 (2003)
[3] Alonso, D.; Bartumeus, F.; Catalan, J.: Mutual interference between predators can give rise to Turing spatial patterns, Ecology 83, 28-34 (2002)
[4] Andreadis, I.; Karakasidis, T.: Noise perturbation of the thermostat in constant temperature molecular dynamics simulations, Chaos, solitons & fractals 20, 1165-1172 (2004) · Zbl 1058.81790 · doi:10.1016/j.chaos.2003.09.013
[5] Arditi, R.; Perrin, N.; Saiah, H.: Functional response and heterogeneities: an experimental test with cladocerans, Oikos 60, 69-75 (1991)
[6] Barbera, A.; Spagnoloa, B.: Spatio-temporal patterns in population dynamics, Phys A 314, 120-124 (2002) · Zbl 1001.92040 · doi:10.1016/S0378-4371(02)01173-1
[7] Berryman, A.: The origins and evolution of predator -- prey theory, Ecology 75, 1530-1535 (1992)
[8] Buric, N.; Todorovic, K.; Vasovic, N.: Dynamics of noisy Fitzhugh -- Nagumo neurons with delayed coupling, Chaos, solitons & fractals 40, 2405-2413 (2009) · Zbl 1198.37118 · doi:10.1016/j.chaos.2007.10.036
[9] Cantrell, R.; Cosner, C.: Spatial ecology via reaction-diffusion equations, (2003) · Zbl 1059.92051
[10] Cushing, J.: Periodic time-dependent predator -- prey system, SIAM J appl math 32, 82-95 (1977) · Zbl 0348.34031 · doi:10.1137/0132006
[11] Feng, Q.; Zhong, H.; Hou, X.: Ordering chaos by random shortcuts, Phys rev lett 91, 064102 (2003)
[12] Francesc, S.; José, M.; Jordi, G.: Spatiotemporal order out of noise, Rev mod phys 79, 829 (2007)
[13] Gakkhar, S.; Singh, B.: Dynamics of modified Leslie -- gower type predator -- prey model with seasonally varying parameters, Chaos, solitons & fractals 27, 1239-1255 (2006) · Zbl 1094.92059 · doi:10.1016/j.chaos.2005.04.097
[14] Gan, C.: Noise-induced chaos in a quadratically nonlinear oscillator, Chaos, solitons & fractals 30, 920-929 (2006)
[15] Garrick, A.; James, F.: Functional responses with predator interference: viable alternatives to the Holling-type II model, Ecology 82, 3083-3092 (2001)
[16] Garvie, M.: Finite-difference schemes for reaction-diffusion equations modelling predator -- prey interactions in Matlab, Bull math biol 69, 931-956 (2007) · Zbl 1298.92081
[17] Ginzburg, L.: Assuming reproduction to be a function of consumption raises doubts about some popular predator -- prey models, J animal ecol 67, 325-327 (1998)
[18] Guan, J.; Wu, Z.; Wang, Y.: Effects of inhomogeneous activity of players and noise on cooperation in spatial public goods games, Phys rev E 76, 056101 (2007)
[19] Hou, Z.; Yang, L.; Zuo, X.; Xin, H.: Noise induced pattern transition and spatiotemporal stochastic resonance, Phys rev lett 81, 2854-2857 (1998)
[20] Huang, J.; Jing, Z.: Bifurcations and chaos in three-well Duffing system with one external forcing, Chaos, solitons & fractals 40, 1449-1466 (2009) · Zbl 1197.37064 · doi:10.1016/j.chaos.2007.09.045
[21] Ivlev, V.: Experimental ecology of the feeding fishes, (1961)
[22] Jose, V.; Ricard, V.: Effects of noise in symmetric two-species competition, Phys rev lett 80, 4099-4102 (1998)
[23] Kendall, B.: Cycles, chaos, and noise in predator -- prey dynamics, Chaos, solitons & fractals 12, 321-332 (2001) · Zbl 0977.92028 · doi:10.1016/S0960-0779(00)00180-6
[24] Kooij, R.: A predator -- prey model with ivlev’s functional response, J math anal appl 198, 473-489 (1996) · Zbl 0851.34030 · doi:10.1006/jmaa.1996.0093
[25] Liu, Q.; Li, B.; Jin, Z.: Resonance and frequency-locking phenomena in a spatially extended phytoplankton -- zooplankton system with additive noise and periodic forces, J stat mech, P05011 (2008)
[26] Luca, G.; Peter, H.; Peter, J.; Fabio, M.: Stochastic resonance, Rev mod phys 70, 223-287 (1998)
[27] Malchow, H.; Hilker, F.; Petrovskii, S.: Noise and productivity dependence of spatiotemporal pattern formation in a prey -- predator system, Disc cont dyn syst B 4, 705-711 (2004) · Zbl 1114.92068 · doi:10.3934/dcdsb.2004.4.705
[28] Mankin, R.; Laas, T.; Sauga, A.; Ainsaar, A.: Colored-noise-induced Hopf bifurcations in predator -- prey communities, Phys rev E 74, 021101 (2006)
[29] Matjaz, P.: Coherence resonance in a spatial prisoner’s dilemma, New J phys 8, 22 (2006)
[30] May, R.: Stability and complexity in model ecosystems, (1981)
[31] Metz, J.; Diekmann, O.: A gentle introduction to structured population models: three worked examples, Lecture notes in biomathematics 68, 3-45 (1986)
[32] Murray, J.: Mathematical biology. II. spatial models and biomedical applications, Interdisciplinary applied mathematics 18 (2003) · Zbl 1006.92002
[33] Neuhauser, C.: Mathematical challenges in spatial ecology, Noti am math soc 47, 1304-1314 (2001) · Zbl 1128.92328 · http://www.ams.org/notices/200111/fea-neuhauser.pdf
[34] Oskay, W.; Steck, D.; Raizen, M.: Timing noise acts on dynamical localization, Chaos, solitons & fractals 16, 409-416 (2003) · Zbl 1037.81536
[35] Pearce, I.; Chaplain, M.; Schofield, P.; Anderson, A.; Hubbard, S.: Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: heterogeneous patterns and ecological implications, J theo biol 241, 876-886 (2006)
[36] Preedy, K.; Schofield, P.; Chaplain, M.; Hubbard, S.: Disease induced dynamics in host-parasitoid systems: chaos and coexistence, J roy soc int 4, No. 14, 463-471 (2007)
[37] Rozenfeld, A.; Tessone, C.; Albano, E.; Wio, H.: On the influence of noise on the critical and oscillatory behavior of a predator -- prey model: coherent stochastic resonance at the proper frequency of the system, Phys lett A 280, 45-52 (2001) · Zbl 0972.37005 · doi:10.1016/S0375-9601(01)00033-0
[38] Ruan, S.; Xiao, D.: Global analysis in a predator -- prey system with nonmonotonic functional response, SIAM J appl math 61, 1445-1472 (2001) · Zbl 0986.34045 · doi:10.1137/S0036139999361896
[39] Sailer, X.; Hennig, D.; Beato, V.; Engel, H.; Schimansky, G.: Regular patterns in dichotomically driven activator -- inhibitor dynamics, Phys rev E 73, 05620 (2006)
[40] Sherratt, J.; Lewis, M.; Fowler, A.: Ecological chaos in the wake of invasion, proc, Nat acad sci 92, 2524-2528 (1995) · Zbl 0819.92024 · doi:10.1073/pnas.92.7.2524
[41] Sherratt, J.; Eagan, B.; Lewis, M.: Oscillations and chaos behind predator -- prey invasion: mathematical artifact or ecological reality?, Phil trans roy soc lond-B 352, 21-38 (1997)
[42] Sherratt, J.; Perumpanani, A.; Owen, M.: Pattern formation in cancer, On growth and form: spatio-temporal pattern formation in biology (1999)
[43] Si, F.; Liu, Q.; Zhang, J.; Zhou, L.: Propagation of travelling waves in sub-excitable systems driven by noise and periodic forcing, Eur phys J B 60, 507-513 (2007)
[44] Spagnolo, B.; Barbera, A.: Role of the noise on the transient dynamics of an ecosystem of interacting species, Phys A 315, 114-124 (2002) · Zbl 1001.92048 · doi:10.1016/S0378-4371(02)01245-1
[45] Staliunas, K.: Spatial and temporal spectra of noise driven stripe patterns, Phys rev E 64, 066129 (2001)
[46] Sugie, J.: Two-parameter bifurcation in a predator -- prey system of ivlev-type, J math anal appl 217, 349-371 (1998) · Zbl 0894.34025 · doi:10.1006/jmaa.1997.5700
[47] Tian, R.: Toward standard parameterization in marine biological modeling, Ecol model 193, 363-386 (2006)
[48] Uriu, K.; Iwasa, Y.: Turing pattern formation with two kinds of cells and a diffusive chemical, Bull math biol 69, No. 8, 2515-2536 (2007) · Zbl 1245.92007
[49] Vilar, J.; Solé, R.: Effects of noise in symmetric two-species competition, Phys rev lett 80, 4099-4102 (1998)
[50] Wang, H.; Wang, W.: The dynamical complexity of a ivlev-type prey -- predator system with impulsive effect, Chaos, solitons & fractals 38, 1168-1176 (2008) · Zbl 1152.34310 · doi:10.1016/j.chaos.2007.02.008
[51] Wang W, Zhang L, Wang H, Li Z. Pattern formation of a predator -- prey system with Ivlev-type functional response. arXiv:0801.0796.
[52] Zhou, C.; Kurths, J.: Noise-sustained and controlled synchronization of stirred excitable media by external forcing, New J phys 7, 18 (2005)