×

Spatiotemporal complexity of a predator-prey system with the effect of noise and external forcing. (English) Zbl 1198.34080

Summary: We present a spatial version of the Ivlev-type predator-prey model which contains some important factors, such as noise on predator, external periodic forcing and diffusion processes on both predator and prey. From the numerical results, we know that noise or external periodic forcing can induce instability and enhance the oscillation of the species density, and the cooperation between noise and external periodic forcing inherent to the deterministic dynamics of periodically driven models gives rise to the appearance of a rich transport phenomenology. Furthermore, we demonstrate that the spatially extended system exhibits a resonant patterns and frequency-locking phenomena. Our results show that noise and external periodic forcing play a prominent role in the predator-prey model.
Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
37N25 Dynamical systems in biology
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ai, B.; Chen, W.; Wang, X.; Liu, G.; Wen, D.; Xie, H., Noise in an insect outbreak model, Chin J Phys, 41, 422-429 (2003)
[2] Ai, B.; Wang, X.; Liu, G.; Liu, L., Correlated noise in a logistic growth model, Phys Rev E, 67, 022903 (2003)
[3] Alonso, D.; Bartumeus, F.; Catalan, J., Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83, 28-34 (2002)
[4] Andreadis, I.; Karakasidis, T., Noise perturbation of the thermostat in constant temperature molecular dynamics simulations, Chaos, Solitons & Fractals, 20, 1165-1172 (2004) · Zbl 1058.81790
[5] Arditi, R.; Perrin, N.; Saiah, H., Functional response and heterogeneities: an experimental test with cladocerans, OIKOS, 60, 69-75 (1991)
[6] Barbera, A.; Spagnoloa, B., Spatio-temporal patterns in population dynamics, Phys A, 314, 120-124 (2002) · Zbl 1001.92040
[7] Berryman, A., The origins and evolution of predator-prey theory, Ecology, 75, 1530-1535 (1992)
[8] Buric, N.; Todorovic, K.; Vasovic, N., Dynamics of noisy FitzHugh-Nagumo neurons with delayed coupling, Chaos, Solitons & Fractals, 40, 2405-2413 (2009) · Zbl 1198.37118
[9] Cantrell, R.; Cosner, C., Spatial ecology via reaction-diffusion equations (2003), John Wiley & Sons Ltd: John Wiley & Sons Ltd England · Zbl 1059.92051
[10] Cushing, J., Periodic time-dependent predator-prey system, SIAM J Appl Math, 32, 82-95 (1977) · Zbl 0348.34031
[11] Feng, Q.; Zhong, H.; Hou, X., Ordering chaos by random shortcuts, Phys Rev Lett, 91, 064102 (2003)
[12] Francesc, S.; José, M.; Jordi, G., Spatiotemporal order out of noise, Rev Mod Phys, 79, 829 (2007)
[13] Gakkhar, S.; Singh, B., Dynamics of modified Leslie-Gower type predator-prey model with seasonally varying parameters, Chaos, Solitons & Fractals, 27, 1239-1255 (2006) · Zbl 1094.92059
[14] Gan, C., Noise-induced chaos in a quadratically nonlinear oscillator, Chaos, Solitons & Fractals, 30, 920-929 (2006)
[15] Garrick, A.; James, F., Functional responses with predator interference: viable alternatives to the Holling-type II model, Ecology, 82, 3083-3092 (2001)
[16] Garvie, M., Finite-difference schemes for reaction-diffusion equations modelling predator-prey interactions in matlab, Bull Math Biol, 69, 931-956 (2007) · Zbl 1298.92081
[17] Ginzburg, L., Assuming reproduction to be a function of consumption raises doubts about some popular predator-prey models, J Animal Ecol, 67, 325-327 (1998)
[18] Guan, J.; Wu, Z.; Wang, Y., Effects of inhomogeneous activity of players and noise on cooperation in spatial public goods games, Phys Rev E, 76, 056101 (2007)
[19] Hou, Z.; Yang, L.; Zuo, X.; Xin, H., Noise induced pattern transition and spatiotemporal stochastic resonance, Phys Rev Lett, 81, 2854-2857 (1998)
[20] Huang, J.; Jing, Z., Bifurcations and chaos in three-well Duffing system with one external forcing, Chaos, Solitons & Fractals, 40, 1449-1466 (2009) · Zbl 1197.37064
[21] Ivlev, V., Experimental ecology of the feeding fishes (1961), Yale University Press: Yale University Press New Haven
[22] Jose, V.; Ricard, V., Effects of noise in symmetric two-species competition, Phys Rev Lett, 80, 4099-4102 (1998)
[23] Kendall, B., Cycles, chaos, and noise in predator-prey dynamics, Chaos, Solitons & Fractals, 12, 321-332 (2001) · Zbl 0977.92028
[24] Kooij, R., A predator-prey model with Ivlev’s functional response, J Math Anal Appl, 198, 473-489 (1996) · Zbl 0851.34030
[25] Liu, Q.; Li, B.; Jin, Z., Resonance and frequency-locking phenomena in a spatially extended phytoplankton-zooplankton system with additive noise and periodic forces, J Stat Mech, P05011 (2008)
[26] Luca, G.; Peter, H.; Peter, J.; Fabio, M., Stochastic resonance, Rev Mod Phys, 70, 223-287 (1998)
[27] Malchow, H.; Hilker, F.; Petrovskii, S., Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system, Disc Cont Dyn Syst B, 4, 705-711 (2004) · Zbl 1114.92068
[28] Mankin, R.; Laas, T.; Sauga, A.; Ainsaar, A., Colored-noise-induced Hopf bifurcations in predator-prey communities, Phys Rev E, 74, 021101 (2006)
[29] Matjaz, P., Coherence resonance in a spatial prisoner’s dilemma, New J Phys, 8, 22 (2006)
[30] May, R., Stability and complexity in model ecosystems (1981), Princeton University Press: Princeton University Press American
[31] Metz, J.; Diekmann, O., A gentle introduction to structured population models: three worked examples, (Metz, J.; Diekmann, O., The dynamics of physiological structured populations. The dynamics of physiological structured populations, Lecture notes in biomathematics, vol. 68 (1986), Springer: Springer Berlin), 3-45 · Zbl 0614.92014
[32] Murray, J., Mathematical biology. II. Spatial models and biomedical applications, Interdisciplinary applied mathematics, vol. 18 (2003), Springer: Springer New York · Zbl 1006.92002
[33] Neuhauser, C., Mathematical challenges in spatial ecology, Noti Am Math Soc, 47, 1304-1314 (2001) · Zbl 1128.92328
[34] Oskay, W.; Steck, D.; Raizen, M., Timing noise acts on dynamical localization, Chaos, Solitons & Fractals, 16, 409-416 (2003) · Zbl 1037.81536
[35] Pearce, I.; Chaplain, M.; Schofield, P.; Anderson, A.; Hubbard, S., Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: heterogeneous patterns and ecological implications, J Theo Biol, 241, 876-886 (2006) · Zbl 1447.92358
[36] Preedy, K.; Schofield, P.; Chaplain, M.; Hubbard, S., Disease induced dynamics in host-parasitoid systems: chaos and coexistence, J Roy Soc Int, 4, 14, 463-471 (2007)
[37] Rozenfeld, A.; Tessone, C.; Albano, E.; Wio, H., On the influence of noise on the critical and oscillatory behavior of a predator-prey model: coherent stochastic resonance at the proper frequency of the system, Phys Lett A, 280, 45-52 (2001) · Zbl 0972.37005
[38] Ruan, S.; Xiao, D., Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J Appl Math, 61, 1445-1472 (2001) · Zbl 0986.34045
[39] Sailer, X.; Hennig, D.; Beato, V.; Engel, H.; Schimansky, G., Regular patterns in dichotomically driven activator-inhibitor dynamics, Phys Rev E, 73, 05620 (2006)
[40] Sherratt, J.; Lewis, M.; Fowler, A., Ecological chaos in the wake of invasion, Proc, Nat Acad Sci, 92, 2524-2528 (1995) · Zbl 0819.92024
[41] Sherratt, J.; Eagan, B.; Lewis, M., Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality?, Phil Trans Roy Soc Lond-B, 352, 21-38 (1997)
[42] Sherratt, J.; Perumpanani, A.; Owen, M., Pattern formation in cancer, (Chaplain, M.; Singh, G.; McLachlan, J., On growth and form: spatio-temporal pattern formation in biology (1999), John Wiley & Sons Ltd) · Zbl 0932.92006
[43] Si, F.; Liu, Q.; Zhang, J.; Zhou, L., Propagation of travelling waves in sub-excitable systems driven by noise and periodic forcing, Eur Phys J B, 60, 507-513 (2007)
[44] Spagnolo, B.; Barbera, A., Role of the noise on the transient dynamics of an ecosystem of interacting species, Phys A, 315, 114-124 (2002) · Zbl 1001.92048
[45] Staliunas, K., Spatial and temporal spectra of noise driven stripe patterns, Phys Rev E, 64, 066129 (2001)
[46] Sugie, J., Two-parameter bifurcation in a predator-prey system of Ivlev-type, J Math Anal Appl, 217, 349-371 (1998) · Zbl 0894.34025
[47] Tian, R., Toward standard parameterization in marine biological modeling, Ecol Model, 193, 363-386 (2006)
[48] Uriu, K.; Iwasa, Y., Turing pattern formation with two kinds of cells and a diffusive chemical, Bull Math Biol, 69, 8, 2515-2536 (2007) · Zbl 1245.92007
[49] Vilar, J.; Solé, R., Effects of noise in symmetric two-species competition, Phys Rev Lett, 80, 4099-4102 (1998)
[50] Wang, H.; Wang, W., The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect, Chaos, Solitons & Fractals, 38, 1168-1176 (2008) · Zbl 1152.34310
[51] Wang W, Zhang L, Wang H, Li Z. Pattern formation of a predator-prey system with Ivlev-type functional response. arXiv:0801.0796; Wang W, Zhang L, Wang H, Li Z. Pattern formation of a predator-prey system with Ivlev-type functional response. arXiv:0801.0796
[52] Zhou, C.; Kurths, J., Noise-sustained and controlled synchronization of stirred excitable media by external forcing, New J Phys, 7, 18 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.