zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and attractivity of periodic solutions to non-autonomous Cohen-Grossberg neural networks with time delays. (English) Zbl 1198.34139
Summary: We investigate the existence and attractivity of periodic solutions to non-autonomous Cohen-Grossberg neural networks with connection time delays for both discrete and distributed cases. By combining the Lyapunov functional method with the contraction mapping principle, we establish several criteria for the existence and global exponential stability of periodic solutions. More interestingly, all the criteria are independent of time delays as well as the delay types, and do not include one another. Several examples with numerical simulations are given to demonstrate the results. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
34K13Periodic solutions of functional differential equations
34D23Global stability of ODE
92B20General theory of neural networks (mathematical biology)
WorldCat.org
Full Text: DOI
References:
[1] Cao, J.; Li, Q.: On the exponential stability and periodic solutions of delayed cellular neural networks, J math anal appl 252, 50-64 (2000) · Zbl 0976.34067 · doi:10.1006/jmaa.2000.6890
[2] Chen, Y.: Global asymptotic stability of delayed Cohen -- Grossberg neural networks, IEEE trans circuits syst I 53, 351-357 (2006)
[3] Chen, Z.; Ruan, J.: Global stability analysis of impulsive Cohen -- Grossberg neural networks with delay, Phys lett A 345, 101-111 (2005) · Zbl 05314183
[4] Chen, Z.; Ruan, J.: Global dynamic analysis of general Cohen -- Grossberg neural networks with impulse, Chaos, solitons & fractals 32, 1830-1837 (2007) · Zbl 1142.34045 · doi:10.1016/j.chaos.2005.12.018
[5] Chen, Z.; Zhao, D.; Ruan, J.: Dynamic analysis of high-order Cohen -- Grossberg neural networks with time delay, Chaos, solitons & fractals 32, 1538-1546 (2007) · Zbl 1142.34372 · doi:10.1016/j.chaos.2005.11.095
[6] Cohen, M. A.; Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE trans syst man cybernet 13, 815-826 (1983) · Zbl 0553.92009
[7] Gopalsamy, K.; He, X. -Z.: Stability in asymmetric Hopfield nets with transmission delays, Physcia D 76, 344-358 (1994) · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[8] Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional differential equations, (1993) · Zbl 0787.34002
[9] Hopfield, J. J.: Neurons with graded response have collective computational properties like two-state neurons, Proc natl acad sci USA 81, 3088-3092 (1984)
[10] Li, C. -H.; Yang, S. -Y.: A further analysis on harmless delays in Cohen -- Grossberg neural networks, Chaos, solitons & fractals 34, 646-653 (2007) · Zbl 1137.34352 · doi:10.1016/j.chaos.2006.03.110
[11] Li, Y.: Existence and stability of periodic solutions for Cohen -- Grossberg neural networks with multiple delays, Chaos, solitons & fractals 20, 459-466 (2004) · Zbl 1048.34118 · doi:10.1016/S0960-0779(03)00406-5
[12] Li, Y.; Zhu, L.: Existence and attractivity of periodic solutions to Cohen -- Grossberg neural network with distributed delays, Electronic J diff eq 12, 1-6 (2005) · Zbl 1076.34083 · emis:journals/EJDE/Volumes/2005/12/abstr.html
[13] Liao, X.; Li, C.; Wong, K. -W.: Criteria for exponential stability of Cohen -- Grossberg neural networks, Neural networks 17, 1401-1414 (2004) · Zbl 1073.68073 · doi:10.1016/j.neunet.2004.08.007
[14] Liu, J.: Global exponential stability of Cohen -- Grossberg neural networks with time-varying delays, Chaos, solitons & fractals 26, 935-945 (2005) · Zbl 1138.34349
[15] Sun, J.; Wan, L.: Global exponential stability and periodic solutions of Cohen -- Grossberg neural networks with continuously distributed delays, Physica D 208, 1-20 (2005) · Zbl 1086.34061 · doi:10.1016/j.physd.2005.05.009
[16] Tu, F.; Liao, X.: Harmless delays for global asymptotic stability of Cohen -- Grossberg neural networks, Chaos, solitons & fractals 26, 927-933 (2005) · Zbl 1088.34064 · doi:10.1016/j.chaos.2005.01.045
[17] Wang, L.; Zou, X.: Harmless delays in Cohen -- Grossberg neural networks, Physica D 170, 162-173 (2002) · Zbl 1025.92002 · doi:10.1016/S0167-2789(02)00544-4
[18] Wang, L.; Zou, X.: Exponential stability of Cohen -- Grossberg neural networks, Neural networks 15, 415-422 (2002) · Zbl 1025.92002
[19] Ye, H.; Michel, A. N.; Wang, K.: Qualitative analysis of Cohen -- Grossberg neural networks with multiple delays, Phys rev E 51, 2611-2618 (1995)