zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and Hopf bifurcation analysis of a prey-predator system with two delays. (English) Zbl 1198.34144
Summary: We have considered a prey-predator model with Beddington-DeAngelis functional response and selective harvesting of predator species. Two delays appear in this model to describe the time that juveniles take to mature. Its dynamics are studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. The stability and direction of the Hopf bifurcation are determined by applying the normal form method and the center manifold theory. Numerical simulation results are given to support the theoretical predictions. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

34K18Bifurcation theory of functional differential equations
92D25Population dynamics (general)
34K20Stability theory of functional-differential equations
37N25Dynamical systems in biology
Full Text: DOI
[1] Aiello, W.; Freedman, H.: A time-delay model of single species growth with stage-structure, Math biosci 101, 139-150 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[2] Braucer, F.; Soudack, A.: Stability regions and transition phenomena for harvested predator -- prey systems, J math biol 7, 319-337 (1979) · Zbl 0397.92019 · doi:10.1007/BF00275152
[3] Braucer, F.; Soudack, A.: Stability regions in predator -- prey systems with constant rate prey harvesting, J math biol 8, 51-71 (1979) · Zbl 0406.92020 · doi:10.1007/BF00280586
[4] Clark, C.: Mathematical bioeconomics: the optimal management of renewable resources, (1900) · Zbl 0364.90002
[5] Freeman, H.; Gopalsammy, K.: Global stability in time-delayed single species dynamics, Bull math biol 48, 485 (1986) · Zbl 0606.92020
[6] Hale, J.: Theory of functional differential equations, (1977) · Zbl 0352.34001
[7] Hassard, B.; Kazarinoff, N.; Wan, Y.: Theory and applications of Hopf bifurcation, (1981) · Zbl 0474.34002
[8] Jiang, W.; Wei, J.: Bifurcation analysis in a limit cycle oscillator with delayed feedback, Chaos, solitons & fractals 23, 817-831 (2005) · Zbl 1080.34054 · doi:10.1016/j.chaos.2004.05.028
[9] Jiang, Z.; Wei, J.: Stability and bifurcation analysis in a delayed SIR model, Chaos, solitons & fractals 35, 609-619 (2008) · Zbl 1131.92055 · doi:10.1016/j.chaos.2006.05.045
[10] Kar, T.: Selective harvesting in a prey -- predator fishery with time delay, Math comput model 38, 449-458 (2003) · Zbl 1045.92046 · doi:10.1016/S0895-7177(03)90099-9
[11] Kar, T.; Pahari, U.: Modelling and analysis of a prey -- predator system with stage-structure and harvesting, Nonlinear anal RWA 8, 601-609 (2007) · Zbl 1152.34374 · doi:10.1016/j.nonrwa.2006.01.004
[12] Meng, X.; Wei, J.: Stability and bifurcation of mutual system with time delay, Chaos, solitons & fractals 21, 729-740 (2004) · Zbl 1048.34122 · doi:10.1016/j.chaos.2003.12.050
[13] Myerscough, M.; Gray, B.; Hogarth, W.; Norbury, J.: An analysis of an ordinary differential equations model for a two species predator -- prey system with harvesting and stocking, J math biol 30, 389-411 (1992) · Zbl 0749.92022 · doi:10.1007/BF00173294
[14] Ruan, S.; Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn contin discrete impuls syst ser A math anal 10, 863-874 (2003) · Zbl 1068.34072
[15] Song, Y.; Wei, J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos, Chaos, solitons & fractals 22, 75-91 (2004) · Zbl 1112.37303 · doi:10.1016/j.chaos.2003.12.075
[16] Song, Y.; Wei, J.; Han, M.: Local and global Hopf bifurcation in a delayed hematopoiesis, Int J bifurc chaos 14, 3909-3919 (2004) · Zbl 1090.37547 · doi:10.1142/S0218127404011697
[17] Zhang, C.; Wei, J.: Stability and bifurcation analysis in a kind of business cycle model with delay, Chaos, solitons & fractals 22, 883-896 (2004) · Zbl 1129.34329 · doi:10.1016/j.chaos.2004.03.013
[18] Zhao, J.; Wei, J.: Stability and bifurcation in a two harmful phyoplankton -- zooplankton system, Chaos, solitons & fractals 39, 1395-1409 (2009) · Zbl 1197.37131 · doi:10.1016/j.chaos.2007.05.019