zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms. (English) Zbl 1198.35025
Summary: This paper is concerned with global asymptotic stability of a class of reaction-diffusion stochastic bi-directional associative memory (BAM) neural networks with discrete and distributed delays. Based on suitable assumptions, we apply the linear matrix inequality method to propose some new sufficient stability conditions for reaction-diffusion stochastic BAM neural networks with discrete and distributed delays. The obtained results are easy to check and improve upon the existing stability results. An example is also given to demonstrate the effectiveness of the obtained results.

MSC:
35B35Stability of solutions of PDE
35K57Reaction-diffusion equations
60H15Stochastic partial differential equations
35R10Partial functional-differential equations
35R60PDEs with randomness, stochastic PDE
60H35Computational methods for stochastic equations
Software:
LMI toolbox
WorldCat.org
Full Text: DOI
References:
[1] Haykin, S.: Neural networks: A comprehensive foundation, (1998) · Zbl 0828.68103
[2] Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003) · Zbl 1039.34067
[3] Cao, J.; Ho, D. W. C.: A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach, Chaos solitons fractals 24, 1317-1329 (2005) · Zbl 1072.92004 · doi:10.1016/j.chaos.2004.09.063
[4] Huang, H.; Cao, J.: On global asymptotic stability of recurrent neural networks with time varying delays, Appl. math. Comput. 142, 143-154 (2003) · Zbl 1035.34081 · doi:10.1016/S0096-3003(02)00289-8
[5] Liang, J.; Cao, J.: Boundedness and stability for recurrent neural networks with variable co-efficients and time varying delays, Phys. lett. A 318, 53 (2003) · Zbl 1037.82036 · doi:10.1016/j.physleta.2003.09.020
[6] Wang, Z.; Liu, Y.; Liu, X.: On global asymptotic stability neural networks with discrete and distributed delays, Phys. lett. A 345, 299 (2005) · Zbl 05314210
[7] Perc, Matjaz: Stochastic resonance on excitable small-world networks via a pacemaker, Phys. rev. E 76, 066203 (2007) · Zbl 1151.91358
[8] Perc, Matjaz: Stochastic resonance on weakly paced scale-free networks, Phys. rev. E 78, 036105 (2008)
[9] Perc, Matjaz; Gosak, M.: Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators, New J. Phys. 10, 053008 (2008)
[10] Wang, Q.; Perc, Matjaz; Duan, Z.; Chen, G.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. rev. E 80, 026206 (2009)
[11] Wang, Q.; Perc, Matjaz; Duan, Z.; Chen, G.: Delay-induced multiple stochastic resonances on scale-free neuronal networks, Chaos 19, 023112 (2009)
[12] Wang, Q.; Perc, Matjaz; Duan, Z.; Chen, G.: Delay-enhanced coherence of spiral waves in noisy Hodgkin--Huxley neuronal networks, Phys. lett. A 372, 5681-5687 (2008) · Zbl 1223.92002 · doi:10.1016/j.physleta.2008.07.005
[13] Wang, Q.; Perc, Matjaz; Duan, Z.; Chen, G.: Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability, Epl 83, 50008 (2008)
[14] Chen, Y.; Xue, A.; Zhao, X.; Zhou, S.: Improved delay-dependent stability analysis for uncertain stochastic Hopfield neural networks with time-varying delays, IET control theory appl. 3, 88-97 (2009)
[15] Feng, W.; Yang, Sx.; Wu, H.: On robust stability of uncertain stochastic neural networks with distributed and interval time-varying delays, Chaos solitons fractals 42, 2095-2104 (2009) · Zbl 1198.93158 · doi:10.1016/j.chaos.2009.03.141
[16] Feng, W.; Yang, Sx.; Fu, W.; Wu, H.: Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay, Chaos solitons fractals 41, 414-424 (2009) · Zbl 1198.93157 · doi:10.1016/j.chaos.2008.01.024
[17] Huang, C.; He, Y.; Huang, L.: Stability analysis of non-autonomous stochastic Cohen--Grossberg neural networks, Nonlinear dyn. 57, 469-478 (2009) · Zbl 1176.92001 · doi:10.1007/s11071-008-9456-x
[18] Su, W.; Chen, Y.: Global asymptotic stability analysis for neutral stochastic neural networks with time-varying delays, Commun. nonlinear sci. Numer. simul. 14, 1576-1581 (2009) · Zbl 1221.93214 · doi:10.1016/j.cnsns.2008.04.001
[19] Wu, Y.; Wu, Y.; Chen, Y.: Mean square exponential stability of uncertain stochastic neural networks with time-varying delay, Neurocomputing 72, 2379-2384 (2009)
[20] Yang, R.; Gao, H.; Shi, P.: Novel robust stability criteria for stochastic Hopfield neural networks with time delays, IEEE trans. Syst. man cybern. B 39, 467-474 (2009)
[21] Yu, J.; Zhang, K.; Fei, S.: Further results on mean square exponential stability of uncertain stochastic delayed neural networks, Commun. nonlinear sci. Numer. simul. 14, 1582-1589 (2009) · Zbl 1221.93267 · doi:10.1016/j.cnsns.2008.04.009
[22] Kosto, B.: Adaptive bi-directional associative memories, Appl. optim. 26, 4947-4960 (1987)
[23] Kosto, B.: Bi-directional associative memoriees, IEEE trans. Syst. man cybern. 18, 49-60 (1988)
[24] Kosto, B.: Neural networks and fuzzy system -- A dynamical systems approach to machine intelligence, (1992) · Zbl 0755.94024
[25] Cao, J.; Wang, L.: Periodic oscillatory solution of bi-directional associative memory networks with delays, Phys. rev. E 61, 1825-1828 (2000)
[26] Liao, X.; Yu, J.: Qualitative analysis of bi-directional associative memory with time delay, Int. J. Circuit theory appl. 26 (1998) · Zbl 0915.94012 · doi:10.1002/(SICI)1097-007X(199805/06)26:3<219::AID-CTA991>3.0.CO;2-I
[27] Cao, J.: Global asymptotic stability of delayed bi-directional associative memory neural networks, Appl. math. Comput. 142, 333-339 (2003) · Zbl 1031.34074 · doi:10.1016/S0096-3003(02)00308-9
[28] Cui, B. T.; Lou, X. Y.: Global asymptotic stability of delayed BAM neural networks with distributed delays and reaction--diffusion terms, Chaos solitons fractals 27, 1347-1354 (2006) · Zbl 1084.68095 · doi:10.1016/j.chaos.2005.04.112
[29] Liang, J.; Cao, J.: Global exponential stability of reaction diffusion recurrent neural networks with time delays, Phys. lett. A 314, 434 (2003) · Zbl 1052.82023 · doi:10.1016/S0375-9601(03)00945-9
[30] Song, Q.; Zhao, Z.; Li, Y.: Global exponential stability of BAM with distributed delays and reaction--diffusion terms, Phys. lett. A 335, 213-25 (2005) · Zbl 1123.68347 · doi:10.1016/j.physleta.2004.12.007
[31] Gahinet, P.; Nemirovskii, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide, (1995)
[32] Boyd, B.; Ghoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994) · Zbl 0816.93004
[33] Liao, X.; Wong, K.; Yang, S.: Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays, Phys. lett. A 316, 55-64 (2003) · Zbl 1038.92001 · doi:10.1016/S0375-9601(03)01113-7
[34] Wang, L.; Zhang, Z.; Wang, Y.: Stochastic exponential stability of the delayed reaction--diffusion recurrent neural networks with Markovian jumping parameters, Phys. lett. A 372, 3201-3209 (2008) · Zbl 1220.35090 · doi:10.1016/j.physleta.2007.07.090
[35] Liu, Y.; Wang, Z.; Liu, X.: On global exponential stability of generalized stochastic neural networks with mixed time-delays, Neurocomputing 70, 314-326 (2006)
[36] K. Gu, An Integral inequality in the stability problems of time delay system, in: Proceeding of 39th IEEE Conference on Decision and Control Sydney, Australia, 2000, pp. 2805--2810.
[37] Khasminskii, R.: Stochastic stability of differential equations, (1980) · Zbl 1259.60058
[38] Bates, P. W.; Lu, K.; Wang, B.: Random attractors for stochastic reaction--diffusion equations on unboundend domains, J. differential equations 246, 845-869 (2009) · Zbl 1155.35112 · doi:10.1016/j.jde.2008.05.017
[39] Luo, Q.; Zhang, Y.: Almost sure exponential stability of stochastic reaction--diffusion system, Nonlinear anal. TMA 71 (2009) · Zbl 1238.60065