zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamic analysis of a fractional-order Lorenz chaotic system. (English) Zbl 1198.37063
Summary: The dynamic behaviors of fractional-order differential systems have received increasing attention in recent decades. But many results about fractional-order chaotic systems are attained only by using analytic and numerical methods. Based on the qualitative theory, the existence and uniqueness of solutions for a class of fractional-order Lorenz chaotic systems are investigated theoretically in this paper. The stability of the corresponding equilibria is also argued similarly to the integer-order counterpart. According to the obtained results, the bifurcation conditions of these two systems are significantly different. Numerical solutions, together with simulations, finally verify the correctness of our analysis. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
37D45Strange attractors, chaotic dynamics
34A08Fractional differential equations
WorldCat.org
Full Text: DOI
References:
[1] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[2] Hilfer, R.: Applications of fractional calculus in physics, (2001) · Zbl 0998.26002
[3] Bagley, R.; Calico, R.: Fractional order state equations for the control of viscoelastically damped structures, J guid contr dyn 14, 304-311 (1991)
[4] Sun, H.; Abdelwahed, A.; Onaral, B.: Linear approximation for transfer function with a pole of fractional order, IEEE trans auto contr 29, 441-444 (1984) · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[5] Ichise, M.; Nagayanagi, Y.; Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode process, J electroanal chem 33, 253-265 (1971)
[6] Heaviside, O.: Electromagnetic theory, (1971) · Zbl 30.0801.03
[7] Laskin, N.: Fractional market dynamics, Physica A 287, 482-492 (2000)
[8] Kunsezov, D.; Bulagc, A.; Dang, G.: Quantum Lévy processes and fractional kinetics, Phys rev lett 2, 1136-1139 (1999)
[9] Laskin, N.: Fractional quantum mechanics, Phys rev E 62, 3135-3145 (2000)
[10] Laskin, N.: Fractional quantum mechanics and Lévy path integrals, Phys lett A 298, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[11] Laskin, N.: Fractals and quantum mechanics, Chaos 10, 780-790 (2000) · Zbl 1071.81513 · doi:10.1063/1.1050284
[12] Laskin, N.: Fractional Schrödinger equation, Phys rev E 66, 056108 (2002)
[13] Guo, X.; Xu, M.: Some physical applications of fractional Schrödinger equation, J math phys 47, 82104 (2006) · Zbl 1112.81028 · doi:10.1063/1.2235026
[14] Dong, J.; Xu, M.: Solutions to the space fractional Schrödinger equation using momentum representation method, J math phys 48, 072105 (2007) · Zbl 1144.81341 · doi:10.1063/1.2749172
[15] Wang, S.; Xu, M.: Generalized fractional Schrödinger equation with space-time fractional derivatives, J math phys 48, 043502 (2007) · Zbl 1137.81328 · doi:10.1063/1.2716203
[16] Dong, J.; Xu, M.: Space-time fractional Schrödinger equation with time-independent potentials, J math anal appl 344, 1005-1017 (2008) · Zbl 1140.81357 · doi:10.1016/j.jmaa.2008.03.061
[17] Naker, M.: Time fractional Schrödinger equation, J math phys 45, No. 8, 3339-3352 (2004) · Zbl 1071.81035
[18] Hartley, T.; Lorenzo, C.; Qammer, H.: Chaos in a fractional order Chua’s system, IEEE trans circuit system I 42, 485-490 (1995)
[19] Li, C.; Chen, G.: Chaos in the fractional order Chen system and its control, Chaos solitons and fractals 22, 549-554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[20] Grigorenko, I.; Grigorenko, E.: Chaos dynamics of fractional Lorenz system, Phys rev lett 91, 034101 (2003) · Zbl 1052.20021
[21] Wang, J.; Zhang, Y.: Designing synchronization schemes for chaotic fractional order unified systems, Chaos solitons and fractals 30, 1265-1272 (2006) · Zbl 1142.37332 · doi:10.1016/j.chaos.2005.09.027
[22] Diethelm, K.; Ford, J.: Analysis of fractional differential equations, J math anal appl 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[23] Lu, J.: Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal, Physica A 359, 107-118 (2006)
[24] Yan, J.; Li, C.: On chaos synchronization of fractional differential equations, Chaos solitons and fractals 32, 725-735 (2007) · Zbl 1132.37308 · doi:10.1016/j.chaos.2005.11.062
[25] Wang, J.; Zhou, T.: Chaos synchronization based on contraction principle, Chaos solitons and fractals 33, 163-170 (2007) · Zbl 1152.37321 · doi:10.1016/j.chaos.2006.01.033
[26] Peng, G.: Synchronization of fractional order chaotic systems, Phys lett A 363, 414-419 (2007) · Zbl 1197.37040 · doi:10.1016/j.physleta.2006.11.053
[27] Sweilam, N.; Khader, M.; Al-Bar, R.: Numerical studies for a multi-order fractional differential equation, Phys lett A 1 -- 2, 26-33 (2007) · Zbl 1209.65116 · doi:10.1016/j.physleta.2007.06.016
[28] El-Sayed, A.; Gaafar, F.; Hashem, H.: On the maximal and minimal solutions of arbitrary orders nonlinear functional integer and differential equations, Math sci res J 8, No. 11, 336-348 (2004) · Zbl 1068.45008
[29] Ahmad, E.; El-Sayed, A.; El-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator -- prey and rabies models, J math anal appl 325, 42-553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[30] Matignon D. Stability results of fractional differential equations with applications to control processing. In: IMACS. IEEE-SMC: Lille, France; 1996. p. 963 -- 68.
[31] Diethelm, K.; Ford, J.; Freed, A.: Detailed error analysis for a fractional Adams method, Numer algorithms 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[32] Diethelm, K.; Ford, J.: Multi-order fractional differential equations and their numerical solution, Appl math comput 154, 621-640 (2004) · Zbl 1060.65070 · doi:10.1016/S0096-3003(03)00739-2