zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems. (English) Zbl 1198.37091
Summary: We study in detail the grid search numerical method to locate symmetric periodic orbits in Hamiltonian systems of two degrees of freedom. The method is based on the classical search method but combining up-to-date numerical algorithms in the search and in the integration process. Instead of using Newton methods that requires to differentiate the Poincaré map we use the Brent’s method and in the integration process a Taylor series method that permits us to compute the orbits using extended precision, something highly interesting in the case of unstable periodic orbits. These facts have permitted us to obtain much more periodic orbits than other researchers. Once the families of periodic orbits have been found we study the bifurcations just by comparing with the stability index and the classical generic bifurcations for Hamiltonian systems with and without symmetries. We illustrate the method with four important classical Hamiltonian problems. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
37J45Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods
70-08Computational methods (mechanics of particles and systems)
70H05Hamilton’s equations
70H12Periodic and almost periodic solutions (mechanics of particles and systems)
WorldCat.org
Full Text: DOI
References:
[1] Tadi, M.: On computing periodic orbits, J sound vib 283, No. 1 -- 2, 495-506 (2005) · Zbl 1237.34086
[2] Farantos, S. C.: POMULT: a program for computing periodic orbits in Hamiltonian systems based on multiple shooting algorithms, Comput phys commun 108, 240-258 (1998) · Zbl 0946.65129 · doi:10.1016/S0010-4655(97)00131-8
[3] Viswanath, D.: The Lindstedt -- Poincaré technique as an algorithm for computing periodic orbits, SIAM rev 43, No. 3, 478-495 (2001) · Zbl 0979.65115 · doi:10.1137/S0036144500375292
[4] Baranger, M.; Davies, K. T. R.; Mahoney, J. H.: The calculation of periodic trajectories, Ann phys 186, No. 1, 95-110 (1988) · Zbl 0651.58031 · doi:10.1016/S0003-4916(88)80018-6
[5] Davies, K. T. R.; Huston, T. E.; Baranger, M.: Calculations of periodic trajectories for the hénon -- Heiles Hamiltonian using the monodromy method, Chaos 2, No. 2, 215-224 (1992) · Zbl 1055.37577 · doi:10.1063/1.165907
[6] Vrahatis, M. N.; Perdiou, A. E.; Kalantonis, V. S.; Perdios, E. A.; Papadakis, K.; Prosmiti, R.: Application of the characteristic bisection method for locating and computing periodic orbits in molecular systems, Comput phys commun 138, 53-68 (2001) · Zbl 0984.65136 · doi:10.1016/S0010-4655(01)00190-4
[7] Ramos, J. I.: Determination of periodic orbits of nonlinear oscillators by means of piecewise-linearization methods, Chaos, solitons & fractals 28, No. 5, 1306-1313 (2006) · Zbl 1106.37011 · doi:10.1016/j.chaos.2005.08.203
[8] Roose, D.; Lust, K.; Champneys, A.; Spence, A.: A Newton -- Picard shooting method for computing periodic solutions of large-scale dynamical systems, Chaos, solitons & fractals 5, No. 10, 1913-1925 (1995) · Zbl 1080.65542 · doi:10.1016/0960-0779(95)90873-Q
[9] Starkov, K. E.: Localization of periodic orbits of polynomial vector fields of even degree by linear functions, Chaos, solitons & fractals 25, No. 3, 621-627 (2005) · Zbl 1092.37016 · doi:10.1016/j.chaos.2004.11.052
[10] Starkov, K. E.; Krishchenko, A. P.: Localization of periodic orbits of polynomial systems by ellipsoidal estimates, Chaos, solitons & fractals 23, No. 3, 981-988 (2005) · Zbl 1077.34046 · doi:10.1016/j.chaos.2004.06.002
[11] Lara, M.; Peláez, J.: On the numerical continuation of periodic orbits -- an intrinsic, 3-dimensional, differential, predictor -- corrector algorithm, Astron astrophys 389, 692-701 (2002) · Zbl 1214.70002 · doi:10.1051/0004-6361:20020598
[12] Wulff, C.; Schebesch, A.: Numerical continuation of symmetric periodic orbits, SIAM J appl dyn syst 5, No. 3, 435-475 (2006) · Zbl 1210.37034 · doi:10.1137/050637170
[13] Doedel EJ, Paffenroth RC, Champneys AR, Fairgrieve TF, Kuznetsov YA, Oldeman, BE, et al. Auto2000: continuation and bifurcation software for ordinary differential equations. 2000; <http://cmvl.cs.concordia.ca>.
[14] Doedel, E.: AUTO: a program for the automatic bifurcation analysis of autonomous systems, Congr numer 30, 265-284 (1981) · Zbl 0511.65064
[15] Birkhoff, G. D.: The restricted problem of three bodies, Rend circ mat Palermo 39, 265-334 (1915) · Zbl 45.1396.01
[16] Devogelaere, R.: On the structure of periodic solutions of conservative systems, with applications, Contributions to the theory of nonlinear oscillations 4 (1958)
[17] Strömgren, E.: Connaissance actuelle des orbites dans le problème des trois corps, Bull astron 9, 87-130 (1925) · Zbl 0012.12801
[18] Hénon, M.: Exploraton numérique du problème restreint. II. masses égales, stabilité des orbites périodiques, Ann astrophys 28, 992-1007 (1965) · Zbl 0151.47502 · http://adsabs.harvard.edu/full/1965AnAp...28..992H
[19] Hénon, M.: Numerical exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability, Astron astropys 1, 223-238 (1969) · Zbl 0177.27703 · http://adsabs.harvard.edu/full/1969A%26A.....1..223H
[20] Simó, C.: Dynamical systems, numerical experiments and super-computing, Mem real acad cienc artes Barcelona 61, No. 1, 3-36 (2003)
[21] Barrio, R.: Sensitivity tools vs. Poincaré sections, Chaos, solitons & fractals 25, No. 3, 711-726 (2005) · Zbl 1092.37531
[22] Guckenheimer, J.; Meloon, B.: Computing periodic orbits and their bifurcations with automatic differentiation, SIAM J sci comput 22, No. 3, 951-985 (2000) · Zbl 0976.65111 · doi:10.1137/S1064827599359278
[23] Choe, W. G.; Guckenheimer, J.: Computing periodic orbits with high accuracy, Comput meth appl mech eng 170, No. 3 -- 4, 331-341 (1999) · Zbl 0954.65092 · doi:10.1016/S0045-7825(98)00201-1
[24] Barrio, R.; Blesa, F.; Lara, M.: VSVO formulation of the Taylor method for the numerical solution of odes, Comput math appl 50, No. 1 -- 2, 93-111 (2005) · Zbl 1085.65056 · doi:10.1016/j.camwa.2005.02.010
[25] Barrio, R.: Performance of the Taylor series method for odes/daes, Appl math comput 163, No. 2, 525-545 (2005) · Zbl 1067.65063 · doi:10.1016/j.amc.2004.02.015
[26] Barrio, R.: Sensitivity analysis of odes/daes using the Taylor series method, SIAM J sci comput 27, No. 6, 1929-1947 (2006) · Zbl 1108.65077 · doi:10.1137/030601892
[27] De Aguiar, M. A. M.; Malta, C. P.; Baranger, M.; Davies, K. T. R.: Bifurcations of periodic trajectories in nonintegrable Hamiltonian systems with two degrees of freedom: numerical and analytical results, Ann phys 180, No. 2, 167-205 (1987) · Zbl 0638.70017 · doi:10.1016/0003-4916(87)90044-3
[28] Marek-Crnjac, L.: On a connection between Stieltjes continued fraction, KAM theory and E-infinity theory, Chaos, solitons & fractals 22, No. 4, 749-752 (2004) · Zbl 1129.81402 · doi:10.1016/j.chaos.2004.03.009
[29] El Naschie, M. S.: Complex vacuum fluctuation as a chaotic limit set of any Kleinian group transformation and the mass spectrum of high energy particle physics via spontaneous self-organization, Chaos, solitons & fractals 17, No. 4, 631-638 (2003) · Zbl 1034.81514 · doi:10.1016/S0960-0779(02)00630-6
[30] El Naschie, M. S.: A review of E infinity theory and the mass spectrum of high energy particle physics, Chaos, solitons & fractals 19, No. 1, 209-236 (2004) · Zbl 1071.81501 · doi:10.1016/S0960-0779(03)00278-9
[31] El Naschie, M. S.: The concepts of E infinity: an elementary introduction to the Cantorian-fractal theory of quantum physics, Chaos, solitons & fractals 22, No. 2, 495-511 (2004) · Zbl 1063.81582 · doi:10.1016/j.chaos.2004.02.028
[32] El Naschie, M. S.: Asymptotic freedom and unification in a golden quantum field theory, Chaos, solitons & fractals 36, No. 3, 521-525 (2008)
[33] Mao, J. M.; Delos, J. B.: Hamiltonian bifurcation theory of closed orbits in the diamagnetic Kepler problem, Phys rev A 45, No. 3, 1746-1761 (1992)
[34] Meyer, K. R.: Generic bifurcation of periodic points, Trans am math soc 149, 95-107 (1970) · Zbl 0198.42902 · doi:10.2307/1995662
[35] Hénon, M.; Heiles, C.: The applicability of the third integral of motion: some numerical experiments, Astronom J 69, 73-79 (1964)
[36] Barrio, R.; Blesa, F.; Serrano, S.: Qualitative analysis of the (n+1)-body ring problem, Chaos, solitons & fractals 36, No. 4, 1067-1088 (2008) · Zbl 1283.70010
[37] Arribas, M.; Elipe, A.: Bifurcations and equilibria in the extended N-body ring problem, Mech res commun 31, No. 1, 1-8 (2004) · Zbl 1073.70010 · doi:10.1016/S0093-6413(03)00086-7
[38] Kalvouridis, T. J.: A planar case of the (n+1) body problem: the ring problem, Astrophys space sci 260, 309-325 (1998) · Zbl 0943.70008 · doi:10.1023/A:1001739018698
[39] Lamb, J. S. W.: Reversing symmetries in dynamical systems, J phys A: math gen 25, 925-937 (1992) · Zbl 0751.70010 · doi:10.1088/0305-4470/25/4/028
[40] Lamb, J. S. W.; Roberts, J. A. G.: Time-reversal symmetry in dynamical systems: a survey, Phys D 112, No. 1 -- 2, 1-39 (1998) · Zbl 1194.34072 · doi:10.1016/S0167-2789(97)00199-1
[41] Dullin, H. R.; Wittek, A.: Complete Poincaré sections and tangent sets, J phys A 28, No. 24, 7157-7180 (1995) · Zbl 0900.70218 · doi:10.1088/0305-4470/28/24/015
[42] Contopoulos, G.: Orbits in highly perturbed dynamical systems. II. stability of periodic orbits, Astronom J 75, 108-130 (1969)
[43] Contopoulos, G.: Order and chaos in dynamical astronomy, (2002) · Zbl 1041.85001
[44] Brent, R. P.: An algorithm with guaranteed convergence for finding a zero of a function, Comput J 14, 422-425 (1971) · Zbl 0231.65046 · doi:10.1093/comjnl/14.4.422
[45] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical recipes in Fortran 77 and Fortran 90, (1996) · Zbl 0878.68049
[46] Greene, J. M.: A method for determining a stochastic transition, J math phys 20, No. 6, 1183-1201 (1979)
[47] Hénon, M.: Vertical stability of periodic orbits in the restricted problem I. Equal masses, Astron astrophys 28, 415-426 (1973) · Zbl 0272.70023
[48] Corliss, G.; Chang, Y. F.: Solving ordinary differential equations using Taylor series, ACM trans math software 8, No. 2, 114-144 (1982) · Zbl 0503.65046 · doi:10.1145/355993.355995
[49] Galias, Z.; Zgliczyński, P.: Computer assisted proof of chaos in the Lorenz equations, Phys D 115, No. 3-4, 165-188 (1998) · Zbl 0941.37018 · doi:10.1016/S0167-2789(97)00233-9
[50] Jorba, À.; Zou, M.: A software package for the numerical integration of odes by means of high-order Taylor methods, Experiment math 14, No. 1, 99-117 (2005) · Zbl 1108.65072 · doi:10.1080/10586458.2005.10128904
[51] Hairer, E.; Nørsett, S. P.; Wanner, G.: Solving ordinary differential equations I, Springer series in computational mathematics 8 (1993) · Zbl 0789.65048
[52] Bailey, D. H.: A Fortran-90 based multiprecision system, ACM trans math software 21, 379-387 (1995) · Zbl 0883.68017 · doi:10.1145/212066.212075 · http://www.acm.org/pubs/contents/journals/toms/1995-21/
[53] Meyer, K. R.; Hall, G. R.: Introduction to Hamiltonian dynamical systems and the N-body problem, Applied mathematical sciences 90 (1992) · Zbl 0743.70006
[54] Ivankov, N. Y.; Kuznetsov, S. P.: Complex periodic orbits, renormalization, and scaling for quasiperiodic golden-mean transition to chaos, Phys rev E 63, No. 4, 046210 (2001)
[55] Diacu, F.; Holmes, P.: Celestial encounters, (1996) · Zbl 0944.37001
[56] De Aguiar, M. A. M.; Malta, C. P.: Isochronous and period doubling bifurcations of periodic solutions of nonintegrable Hamiltonian systems with reflexion symmetries, Phys D 30, No. 3, 413-424 (1988) · Zbl 0658.58022 · doi:10.1016/0167-2789(88)90029-2
[57] Buono, P. L.; Laurent-Polz, F.; Montaldi, J.: Symmetric Hamiltonian bifurcations, London mathematical society lecture note series 306, 357-402 (2005) · Zbl 1161.37040
[58] Dellnitz, M.; Melbourne, I.; Marsden, J. E.: Generic bifurcation of Hamiltonian vector fields with symmetry, Nonlinearity 5, No. 4, 979-996 (1992) · Zbl 0783.58024 · doi:10.1088/0951-7715/5/4/008