zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On stability of a cubic functional equation in intuitionistic fuzzy normed spaces. (English) Zbl 1198.39035
Summary: We determine some stability results concerning the cubic functional equation $$f(2x+y)+f(2x-y)=2f(x+y)+2f(x-y)+12f(x)$$ in intuitionistic fuzzy normed spaces (IFNS). We define the intuitionistic fuzzy continuity of the cubic mappings and prove that the existence of a solution for any approximately cubic mapping implies the completeness of IFNS. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
39B52Functional equations for functions with more general domains and/or ranges
39B82Stability, separation, extension, and related topics
46S40Fuzzy functional analysis
WorldCat.org
Full Text: DOI
References:
[1] Aoki, T.: On the stability of the linear transformation in Banach spaces, J math soc jpn 2, 64-66 (1950) · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[2] Barros, L. C.; Bassanezi, R. C.; Tonelli, P. A.: Fuzzy modelling in population dynamics, Ecol model 128, 27-33 (2000)
[3] El Naschie, M. S.: On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, solitons and fractals 9, 517-529 (1998) · Zbl 0935.81009 · doi:10.1016/S0960-0779(97)00150-1
[4] El Naschie, M. S.: A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, solitons and fractals 19, 209-236 (2004) · Zbl 1071.81501 · doi:10.1016/S0960-0779(03)00278-9
[5] El Naschie, M. S.: Fuzzy dodecahedron topology and E-infinity spacetime as a model for quantum physics, Chaos, solitons and fractals 30, 1025-1033 (2006)
[6] El Naschie, M. S.: Holographic dimensional reduction: center manifold theorem and E-infinity, Chaos, solitons and fractals 29, 816-822 (2006)
[7] El Naschie, M. S.: A review of applications and results of E-infinity theory, Int J nonlinear sci numer simul 8, 11-20 (2007)
[8] El Naschie, M. S.: On zero-dimensional points curvature in the dynamics of Cantorian-fractal spacetime setting and high energy particle physics, Chaos, solitons and fractals 41, 2725-2732 (2009)
[9] El Naschie, M. S.: Arguments for the compactness and multiple connectivity of our cosmic spacetime, Chaos, solitons and fractals 41, 2787-2789 (2009)
[10] Feng, G.; Chen, G.: Adaptative control of discrete-time chaotic systems: a fuzzy control approach, Chaos, solitons and fractals 253, 459-467 (2005) · Zbl 1061.93501 · doi:10.1016/j.chaos.2004.04.013
[11] Fradkov, A. L.; Evans, R. J.: Control of chaos: methods and applications in engineering, Chaos, solitons and fractals 29, 33-56 (2005)
[12] Giles, R.: A computer program for fuzzy reasoning, Fuzzy sets syst 4, 221-234 (1980) · Zbl 0445.03007 · doi:10.1016/0165-0114(80)90012-3
[13] Hong, L.; Sun, J. Q.: Bifurcations of fuzzy nonlinear dynamical systems, Commun nonlinear sci numer simul 1, 1-12 (2006) · Zbl 1078.37049 · doi:10.1016/j.cnsns.2004.11.001
[14] Hyers, D. H.: On the stability of the linear functional equation, Proc natl acad sci USA 27, 222-224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[15] Hyers, D. H.; Isac, G.; Rassias, T. M.: Stability of functional equations in several variables, (1998) · Zbl 0907.39025
[16] Jun, K. W.; Kim, H. M.: The generalized Hyers -- Ulam -- rassias stability of a cubic functional equation, J math anal appl 274, 867-878 (2002) · Zbl 1021.39014 · doi:10.1016/S0022-247X(02)00415-8
[17] Jun, K. W.; Kim, H. M.; Chang, I. S.: On the Hyers -- Ulam stability of an Euler -- Lagrange type cubic functional equation, J comput anal appl 7, 21-33 (2005) · Zbl 1087.39029
[18] Marek-Crnjac, L.: A short history of fractal-Cantorian space-time, Chaos, solitons and fractals 41, 2697-2705 (2009)
[19] Marek-Crnjac, L.: A Feynman path integral-like method for deriving the four dimensionality of spacetime from first principles, Chaos, solitons and fractals 41, 2471-2473 (2009)
[20] Mirmostafaee, A. K.; Mirzavaziri, M.; Moslehian, M. S.: Fuzzy stability of the Jensen functional equation, Fuzzy sets syst 159, 730-738 (2008) · Zbl 1179.46060 · doi:10.1016/j.fss.2007.07.011
[21] Mirmostafaee, A. K.; Moslehian, M. S.: Fuzzy versions of Hyers -- Ulam -- rassias theorem, Fuzzy sets syst 159, 720-729 (2008) · Zbl 1178.46075 · doi:10.1016/j.fss.2007.09.016
[22] Mirmostafaee, A. K.; Moslehian, M. S.: Fuzzy approximately cubic mappings, Inf sci 178, 3791-3798 (2008) · Zbl 1160.46336 · doi:10.1016/j.ins.2008.05.032
[23] Mirmostafaee AK, Moslehian MS. Fuzzy almost quadratic functions. Results Math. doi:10.1007/s00025-007-0278-9.
[24] Mursaleen, M.; Mohiuddine, S. A.: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos, solitons and fractals 41, 2414-2421 (2009) · Zbl 1198.40007 · doi:10.1016/j.chaos.2008.09.018
[25] Mursaleen, M.; Mohiuddine, S. A.: Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet differentiation, Chaos, solitons and fractals 42, 1010-1015 (2009) · Zbl 1200.46068 · doi:10.1016/j.chaos.2009.02.041
[26] Park, J. H.: Intuitionistic fuzzy metric spaces, Chaos, solitons and fractals 22, 1039-1046 (2004) · Zbl 1060.54010 · doi:10.1016/j.chaos.2004.02.051
[27] Rassias, T. M.: On the stability of the linear mapping in Banach spaces, Proc am math soc 72, 297-300 (1978) · Zbl 0398.47040 · doi:10.2307/2042795
[28] Rassias, T. M.: On the stability of functional equations and a problem of Ulam, Acta appl math 62, 23-130 (2000) · Zbl 0981.39014 · doi:10.1023/A:1006499223572
[29] Saadati, R.; Park, J. H.: On the intuitionistic fuzzy topological spaces, Chaos, solitons and fractals 27, 331-344 (2006) · Zbl 1083.54514 · doi:10.1016/j.chaos.2005.03.019
[30] Saadati, R.: A note on ”some results on the IF-normed spaces”, Chaos, solitons and fractals 41, 206-213 (2009) · Zbl 1198.54023 · doi:10.1016/j.chaos.2007.11.027
[31] Ulam, S. M.: Problems in modern mathematics, (1940) · Zbl 0137.24201