×

The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets. (English) Zbl 1198.65148

Summary: By means of homotopy perturbation method (HPM) an approximate analytical solution of the magnetohydrodynamic (MHD) boundary layer flow of an upper-convected Maxwell (UCM) fluid over a porous stretching sheet is obtained. The main feature of the HPM is that it deforms a difficult problem into a set of problems which are easier to solve. HPM produces analytical expressions for the solution of nonlinear differential equations. The obtained analytic solution is in the form of an infinite power series. In this work, the analytical solution obtained by using only two terms from HPM solution. The results reveal that the proposed method is very effective and simple and can be applied to other nonlinear problems. Also it is shown that this method coincides with homotopy analysis method (HAM) for the studied problem.

MSC:

65L99 Numerical methods for ordinary differential equations
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agassant, J. F.; Avens, P.; Sergent, J.; Carreau, P. J., Polymer, Processing: Principles and Modeling (1991), Hanser Publishers: Hanser Publishers Munich
[2] Lazurkin, J. S., Cold-drawing of glass-like and crystalline polymers, J. Polym. Sci., 30, 121, 595-604 (1958)
[3] Ginzburg, B. M., On the cold drawing of semicrystalline polymers, J. Macromol. Sci. Part B, 44, 2, 217-223 (2005)
[4] Casas, F.; Alba-Simionesco, C.; Lequeux, F.; Montes, H., Cold drawing of polymers: plasticity and aging, J. Non-Cryst. Solids, 352, 42-49, 5076-5080 (2006)
[5] Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids, vols. I and II (1987), Wiley: Wiley New York
[6] Dandapat, B. S.; Gupta, A. S., Flow and heat transfer in a viscoelastic fluid over a stretching sheet, Internat. J. Non-Linear Mech., 24, 3, 215-219 (1989) · Zbl 0693.76015
[7] Subhas, A.; Veena, P., Viscoelastic fluid flow and heat transfer in a porous medium over a stretching sheet, Internat. J. Non-Linear Mech., 33, 3, 531-540 (1998) · Zbl 0907.76007
[8] Cortell, R., A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet, Appl. Math. Comput., 168, 557-566 (2005) · Zbl 1081.76059
[9] Cortell, R., Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet, Phys. Lett. A, 357, 298-305 (2006) · Zbl 1236.76087
[10] Cortell, R., Flow and heat transfer of an electrically-conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field, Int. J. Heat Mass Transfer, 49, 1851-1856 (2006) · Zbl 1189.76778
[11] Hayat, T.; Khan, M.; Asghar, S., Magnetohydrodynamic flow of an Oldroyd 6-constant fluid, Appl. Math. Comput., 155, 417-425 (2004) · Zbl 1126.76388
[12] Chakrabarti, A.; Gupta, A. S., Hydromagnetic flow heat and mass transfer over a stretching sheet, Quart. Appl. Math., 37, 73-78 (1973) · Zbl 0402.76012
[13] Kandasamy, R.; Periasamy, K.; Sivagnana Prabhu, K. K., Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects, Int. J. Heat Mass Transfer, 48, 4557-4561 (2005) · Zbl 1189.76753
[14] Chung-Liu, I., Flow and heat transfer of an electrically-conducting fluid of second grade in a porous medium over a stretching sheet subject to a transverse magnetic field, Int. J. Non-Linear Mech., 40, 465-474 (2005) · Zbl 1349.80016
[15] Takhar, H. S.; Chamkha, A. J.; Nath, G., Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species, Internat. J. Engrg. Sci., 38, 1303-1314 (2003) · Zbl 1210.76205
[16] Chung-Liu, I., A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet, Int. Commun. Heat Mass Transfer, 32, 1075-1084 (2005)
[17] Fosdick, R. L.; Rajagopal, K. R., Anomalous features in the model of second-order fluids, Arch. Ration. Mech. Anal., 70, 145-152 (1979) · Zbl 0427.76006
[18] Dunn, J. E.; Rajagopal, K. R., Fluids of differential type: critical review and thermodynamic analysis, Internat. J. Engrg. Sci., 33, 689-729 (1995) · Zbl 0899.76062
[19] Hayat, T.; Abbas, Z.; Sajid, M., Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Phys. Lett. A, 358, 396-403 (2006) · Zbl 1142.76511
[20] Alizadeh-Pahlavan, A.; Aliakbar, V.; Vakili-Farahani, F.; Sadeghy, K., MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14, 473-488 (2009)
[21] Hillermeier, C., Generalized homotopy approach to multiobjective optimization, Int. J. Optim. Theory Appl., 110, 3, 557-583 (2001) · Zbl 1064.90041
[22] Liao, S. J., Boundary element method for general nonlinear differential operators, Eng. Anal. Bound. Elem., 20, 2, 91-99 (1997)
[23] He, J. H., An approximate solution technique depending upon an artificial parameter, Commun. Nonlinear Sci. Numer. Simul., 3, 2, 92-97 (1998) · Zbl 0921.35009
[24] He, J. H., Newton-like iteration method for solving algebraic equations, Commun. Nonlinear Sci. Numer. Simul., 3, 2, 106-109 (1998) · Zbl 0918.65034
[25] Yildirim, A., On the solution of the nonlinear Kortewegde Vries equation by the homotopy perturbation method, Commun. Numer. Methods Eng. (2008)
[26] Ganji, D. D.; Rajabi, A., Assessment of homotopyperturbation and perturbation methods in heat radiation equations, Int. Commun. Heat Mass Transfer, 33, 391-400 (2006)
[27] Domairry, G.; Nadim, N., Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation, Int. Commun. Heat Mass Transfer, 35, 93-102 (2008)
[28] Rajabi, A., Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Phys. Lett. A, 364, 33-37 (2007) · Zbl 1203.74148
[29] Xu, L., He’s homotopy perturbation method for a boundary layer equation in unbounded domain, Comput. Math. Appl., 54, 1067-1070 (2007) · Zbl 1267.76089
[30] He, J. H., Periodic solutions and bifurcations of delay-differential equations, Phys. Lett. A, 347, 228-230 (2005) · Zbl 1195.34116
[31] Ganji, D. D., The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer, Phys. Lett. A, 355, 337-341 (2006) · Zbl 1255.80026
[32] Yildirim, A., Application of He’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem, Comput. Math. Appl., 57, 4, 612-618 (2009) · Zbl 1165.65398
[33] Yildirim, A., Homotopy perturbation method to obtain exact special solutions with solitary patterns for Boussinesq-like \(B(m, n)\) equations with fully nonlinear dispersion, J. Math. Phys., 50, 2 (2009), 023510/1-10 · Zbl 1202.76032
[34] Yildirim, A.; Koçak, H., Homotopy perturbation method for solving the space-time fractional advection-dispersion equation, Adv. Water Resour., 32, 12, 1711-1716 (2009)
[35] Yildirim, A., Exact solitary-wave solutions for the nonlinear dispersive \(K(2, 2, 1)\) and \(K(3, 3, 1)\) equations by the homotopy perturbation method, Modern Phys. Lett. B, 23, 30, 3667-3675 (2009) · Zbl 1185.35214
[37] Raftari, B., Application of He’s homotopy perturbation method and variational iteration method for nonlinear partial integro-differential equations, World Appl. Sci. J., 7, 4, 399-404 (2009)
[38] He, J. H., Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul., 6, 2, 207-208 (2005) · Zbl 1401.65085
[39] He, J. H., Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350, 87-88 (2006) · Zbl 1195.65207
[41] Barari, A.; Ghotbi, Abdoul R.; Farrokhzad, F.; Ganji, D. D., Variational iteration method and homotopy-perturbation method for solving different types of wave equations, J. Appl. Sci., 8, 1, 120-126 (2008)
[42] Geng, Fazhan; Cui, Minggen; Zhang, Bo, Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods, Nonlinear Anal. RWA, 11, 2, 637-644 (2010) · Zbl 1187.34012
[43] Barari, A.; Omidvar, M.; Ghotbi, Abdoul R.; Ganji, D. D., Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations, Acta Appl. Math., 104, 2, 161-171 (2008) · Zbl 1197.34015
[44] Biazar, J.; Ayati, Z.; Ebrahimi, H., Homotopy perturbation method for general form of porous medium equation, J. Porous Med., 12, 11, 1121-1127 (2009)
[45] Sadeghy, K.; Najafi, A. H.; Saffaripour, M., Sakiadis flow of an upper-convected Maxwell fluid, Int. J. Non-Linear Mech., 40, 1220-1228 (2005) · Zbl 1349.76081
[46] Schlichting, H., Boundary Layer Theory (1964), McGraw-Hill: McGraw-Hill New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.