zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving the fractional BBM-Burgers equation using the homotopy analysis method. (English) Zbl 1198.65205
Summary: Based on the homotopy analysis method, a scheme is developed to obtain approximation solution of a fractional BBM-Burgers equation with initial condition, which is introduced by replacing some integer-order space derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the traditional homotopy analysis method for differential equations of integer-order is directly extended to derive explicit and numerical solutions of the fractional differential equations. The solutions of our model equation are calculated in the form of convergent series with easily computable components. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
65M99Numerical methods for IVP of PDE
35Q53KdV-like (Korteweg-de Vries) equations
45K05Integro-partial differential equations
WorldCat.org
Full Text: DOI
References:
[1] Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering, (1991) · Zbl 0762.35001
[2] Wadat, M.: J phys soc jpn, J phys soc jpn 32, 1681 (1972)
[3] Wadat, M.: J phys soc jpn, J phys soc jpn 34, 1280 (1972)
[4] Wadat, M.; Sanuki, H.; Konno, K.: Prog theor phys, Prog theor phys 53, 419 (1975)
[5] Wadati, M.: J phys soc jpn, J phys soc jpn 38, 673 (1975)
[6] Wadati, M.: J phys soc jpn, J phys soc jpn 38, 681 (1975)
[7] Matveev, V. B.; Salle, M. A.: Darbooux transformation and soliton, (1991) · Zbl 0744.35045
[8] Hirota, R.: The direct method in soliton theory, (2004) · Zbl 1099.35111
[9] Conte, R.; Musette, M.: J phys A: math gen, J phys A: math gen 22, 169 (1989)
[10] Clarkson, P. A.; Kruskal, M. D.: J math phys, J math phys 30, 2201 (1989)
[11] Lou, S. Y.; Chen, C. L.; Tang, X. Y.: J math phys, J math phys 43, 4078 (2002)
[12] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Phys lett A, Phys lett A 289, 69 (2001)
[13] He, J. H.; Wu, X. H.: Chaos solitons & fractals, Chaos solitons & fractals 30, 700 (2006)
[14] Fan, E. G.; Chao, L.: Phys lett A, Phys lett A 285, 373 (2001)
[15] Yan, Z. Y.: Phys lett A, Phys lett A 285, 355 (2001)
[16] Lü, Z. S.: Chaos solitons & fractals, Chaos solitons & fractals 17, 669 (2003)
[17] Li, B.; Chen, Y.; Zhang, H. Q.: Chaos solitons & fractals, Chaos solitons & fractals 15, 647 (2003)
[18] Chen, Y.; Zheng, X. D.; Li, B.; Zhang, H. Q.: Appl math comput, Appl math comput 149, 277 (2004)
[19] Xie, F. D.; Zhang, Y.; Lü, Z. S.: Chaos solitons & fractals, Chaos solitons & fractals 24, 257 (2005)
[20] Wang, Q.; Chen, Y.: Chaos solitons & fractals, Chaos solitons & fractals 30, 197 (2006)
[21] Song, L. N.; Zhang, H. Q.: Appl math comput, Appl math comput 180, 664 (2006)
[22] Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis. Shanghai Jiao Tong University; 1992.
[23] Liao, S. J.: Int J non-linear mech, Int J non-linear mech 34, 759 (1999)
[24] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[25] Liao, S. J.: J fluid mech, J fluid mech 488, 189 (2003)
[26] Liao, S. J.: Appl math comput, Appl math comput 147, 499 (2004)
[27] Liao, S. J.: Int J heat mass transfer, Int J heat mass transfer 48, 2529 (2005)
[28] Liao, S. J.: Appl math comput, Appl math comput 169, 1186 (2005)
[29] Liao, S. J.; Su, J.; Chwang, A. T.: Int J heat mass transfer, Int J heat mass transfer 49, 2437 (2006)
[30] Liao, S. J.; Magyari, E.: Z angew math phys, Z angew math phys 57, 777 (2006)
[31] Liao, S. J.: Stud appl math, Stud appl math 117, 239 (2006)
[32] Abbasbandy, S.: Phys lett A, Phys lett A 360, 109 (2006)
[33] Zhu, S. P.: Anziam j, Anziam j 47, 477 (2006)
[34] Abbasbandy, S.: Phys lett A, Phys lett A 361, 478 (2007)
[35] West, B. J.; Bolognab, M.; Grigolini, P.: Physics of fractal operators, (2003)
[36] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[37] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[38] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[39] Caputo, M.: J roy astr soc, J roy astr soc 13, 529 (1967)