zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations. (English) Zbl 1198.81089
Summary: We propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schrödinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
81Q05Closed and approximate solutions to quantum-mechanical equations
35Q55NLS-like (nonlinear Schrödinger) equations
WorldCat.org
Full Text: DOI
References:
[1] Khuri, S. A.: A new approach to the cubic Schrödinger equation: an application of the decomposition technique, Appl math comput 97, 251-254 (1988) · Zbl 0940.35187 · doi:10.1016/S0096-3003(97)10147-3
[2] Wang, H.: Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl math comput 170, 17-35 (2005) · Zbl 1082.65570 · doi:10.1016/j.amc.2004.10.066
[3] Biazar, J.; Ghazvini, H.: Exact solutions for Schrödinger equations by he’s homotopy perturbation method, Phys lett A 366, 79-84 (2007) · Zbl 1203.65207 · doi:10.1016/j.physleta.2007.01.060
[4] Wazwaz, A. M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos solitons & fractals 37, 1136-1142 (2008) · Zbl 1148.35353 · doi:10.1016/j.chaos.2006.10.009
[5] Sadighi, A.; Ganji, D. D.: Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods, Phys lett A 372, 465-469 (2008) · Zbl 1217.81069 · doi:10.1016/j.physleta.2007.07.065
[6] Zhou, J. K.: Differential transform and its applications for electrical circuits, (1986)
[7] Chen, C. K.; Ho, S. H.: Solving partial differential equations by two-dimensional differential transform method, Appl math comput 106, 171-179 (1999) · Zbl 1028.35008 · doi:10.1016/S0096-3003(98)10115-7
[8] Jang, M. J.; Chen, C. L.; Liu, Y. C.: Two-dimensional differential transform for partial differential equations, Appl math comput 121, 261-270 (2001) · Zbl 1024.65093 · doi:10.1016/S0096-3003(99)00293-3
[9] Abdel-Halim, Hassan: Different applications for the differential transformation in the differential equations, Appl math comput 129, 183-201 (2002) · Zbl 1026.34010 · doi:10.1016/S0096-3003(01)00037-6
[10] Ayaz, F.: On two-dimensional differential transform method, Appl math comput 143, 361-374 (2003) · Zbl 1023.35005 · doi:10.1016/S0096-3003(02)00368-5
[11] Ayaz, F.: Solution of the system of differential equations by differential transform method, Appl math comput 147, 547-567 (2004) · Zbl 1032.35011 · doi:10.1016/S0096-3003(02)00794-4
[12] Kurnaz, A.; Oturnaz, G.; Kiris, M. E.: N-dimensional differential transformation method for solving linear and nonlinear PDE’s, Int J comput math 82, 369-380 (2005) · Zbl 1065.35011 · doi:10.1080/0020716042000301725
[13] Adbel-Halim, Hassan: Comparison differential transform technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos solitons & fractals 36, 53-65 (2008) · Zbl 1152.65474 · doi:10.1016/j.chaos.2006.06.040
[14] Figen, Kangalgil; Fatma, Ayaz: Solitary wave solutions for the KdV and mkdv equations by differential transform method, Chaos solitons & fractals 41, No. 1, 464-472 (2009) · Zbl 1198.35222 · doi:10.1016/j.chaos.2008.02.009