×

Characteristic classes of gauge systems. (English) Zbl 1198.81179

Summary: We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.

MSC:

81T70 Quantization in field theory; cohomological methods

References:

[1] Batalin, I. A.; Vilkovisky, G. A., Gauge algebra and quantization, Phys. Lett. B, 102, 27-31 (1981)
[2] Batalin, I. A.; Vilkovisky, G. A., Quantization of gauge theories with linearly dependent generators, Phys. Rev. D, 28, 2567-2582 (1983)
[3] Batalin, I. A.; Vilkovisky, G. A., Existence theorem for gauge algebra, J. Math. Phys., 26, 172-184 (1985)
[4] Batalin, I. A.; Vilkovisky, G. A., Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B, 69, 309-312 (1977)
[5] Batalin, I. A.; Fradkin, E. S., A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. B, 122, 157-164 (1983) · Zbl 0967.81508
[6] Henneaux, M.; Teitelboim, C., Quantization of Gauge Systems (1992), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0838.53053
[7] Vaintrob, A., Lie algebroids and homological vector fields, Russ. Math. Surv., 52, 428-429 (1997) · Zbl 0955.58017
[8] Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Contemp. Math., 315, 169-185 (2002) · Zbl 1036.53057
[9] Voronov, Th. Th., Graded manifolds and Drinfeld doubles for Lie bialgebroids, Contemp. Math., 315, 131-168 (2002) · Zbl 1042.53056
[10] Batalin, I. A.; Fradkin, E. S., Operator quantization and abelization of dynamical systems subject to first class constraints, Riv. Nuovo Cimento, 9, N10, 1-48 (1986)
[11] Batalin, I. A.; Vilkovisky, G. A., Closure of the gauge algebra, generalized lie equations and Feynman rules, Nucl. Phys. B, 234, 106-124 (1984)
[12] Fernandes, R. L., Lie algebroids, holonomy and characteristic classes, Adv. Math., 170, N1, 119-179 (2002) · Zbl 1007.22007
[13] Schwarz, A. S., Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys., 155, 249-260 (1993) · Zbl 0786.58017
[14] Schwarz, A. S., Semiclassical approximation in Batalin-Vilkovisky formalism, Commun. Math. Phys., 158, 373-396 (1993) · Zbl 0855.58005
[15] Alexandrov, M.; Kontsevich, M.; Schwarz, A.; Zaboronsky, O., The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A, 12, 1405-1430 (1997) · Zbl 1073.81655
[16] Grigoriev, M. A.; Semikhatov, A. M.; Tipunin, I. Yu., Gauge symmetries of the master action, J. Math. Phys., 40, 1792-1806 (1999) · Zbl 1057.81534
[17] Grigoriev, M. A.; Semikhatov, A. M.; Tipunin, I. Yu., BRST formalism and zero locus reduction, J. Math. Phys., 42, 3315-3333 (2001) · Zbl 1060.81604
[18] Batalin, I.; Marnelius, R., Generalized Poisson sigma models, Phys. Lett. B, 512, 225-229 (2001) · Zbl 0969.81569
[19] Stasheff, J., Homological reduction of constrained Poisson algebras, J. Differential Geom., 45, 221-240 (1997) · Zbl 0874.58020
[20] Barnich, G.; Brandt, F.; Henneaux, M., Local BRST cohomology in the antifield formalism: I, II, Commun. Math. Phys., 174, 57-116 (1995) · Zbl 0844.53059
[21] Barnich, G.; Brandt, F.; Henneaux, M., Local BRST cohomology in gauge theories, Phys. Rep., 338, 439-569 (2000) · Zbl 1097.81571
[22] Khudaverdian, O. M., Geometry of spaces with even and odd brackets, J. Math. Phys., 32, 1934-1937 (1991) · Zbl 0737.58063
[23] Khudaverdian, O. M.; Voronov, Th. Th., On odd Laplace operators, Lett. Math. Phys., 62, N2, 127-142 (2002) · Zbl 1044.58042
[24] Rothstein, M., The structure of supersymplectic supermanifolds, (Lecture Notes in Physics, vol. 375 (1991), Springer-Verlag: Springer-Verlag Berlin), 331 · Zbl 0747.58010
[25] Weinstein, A., Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40, 705-727 (1988) · Zbl 0642.58025
[26] Roytenberg, D., Quasi-Lie bialgebras and twisted Poisson manifolds, Lett. Math. Phys., 61, 123-137 (2002) · Zbl 1027.53104
[27] Courant, T., Dirac manifolds, Trans. Amer. Math. Soc., 319, 631-661 (1990) · Zbl 0850.70212
[28] Liu, Z.-J.; Weinstein, A.; Xu, P., Manin triples for Lie bialgebroids, J. Differential Geom., 45, 547-574 (1997) · Zbl 0885.58030
[29] Weinstein, A., The modular automorphism group of a Poisson manifold, J. Geom. Phys., 23, 379-394 (1997) · Zbl 0902.58013
[30] Zinn-Justin, J., Chiral anomalies and topology · Zbl 1069.81061
[31] De Jonghe, F.; Siebelink, R.; Troost, W., Hiding anomalies, Phys. Lett. B, 306, 295 (1993)
[32] Bertelson, M.; Cahen, M.; Gutt, S., Equivalence of star products, Class. Quantum Grav., 14, A93-A107 (1997) · Zbl 0881.58021
[33] Fedosov, B. V., Deformation Quantization and Index Theory (1996), Akademie Verlag: Akademie Verlag Berlin · Zbl 0867.58061
[34] Dolgushev, V. A.; Lyakhovich, S. L.; Sharapov, A. A., Wick type deformation quantization of Fedosov manifolds, Nucl. Phys. B, 606, 647-672 (2001) · Zbl 0969.81635
[35] Karabegov, A. V.; Schlichenmaier, M., Almost Kähler deformation quantization, Lett. Math. Phys., 57, 135-148 (2001) · Zbl 1044.53061
[36] Brink, L.; Henneaux, M., Principles of String Theory (1988), Plenum: Plenum New York
[37] Batalin, I. A.; Fradkin, E. S., Operatorial quantization of dynamical systems subject to constraints. A further study of the construction, Ann. Inst. H. Poincaré, 49, N2, 145-214 (1988)
[38] Stasheff, J., Deformation theory and the Batalin-Vilkovisky master equation, (Proceedings of the Conference on Deformation Theory (1996), Ascona: Ascona Switzerland) · Zbl 1149.81359
[39] Leites, D., Introduction to supermanifold theory, Russ. Math. Surv., 33, 1-55 (1980), an expanded version: Supermanifold Theory, Karelia Branch of the USSR Acad. of Sci., Petrozavodsk, 1983 (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.